Skip to main content
Glama
chat.py16.7 kB
""" Chat tool - General development chat and collaborative thinking This tool provides a conversational interface for general development assistance, brainstorming, problem-solving, and collaborative thinking. It supports file context, images, and conversation continuation for seamless multi-turn interactions. """ import logging import os import re from pathlib import Path from typing import TYPE_CHECKING, Any, Optional from pydantic import Field if TYPE_CHECKING: from providers.shared import ModelCapabilities from tools.models import ToolModelCategory from config import TEMPERATURE_BALANCED from systemprompts import CHAT_PROMPT, GENERATE_CODE_PROMPT from tools.shared.base_models import COMMON_FIELD_DESCRIPTIONS, ToolRequest from .simple.base import SimpleTool # Field descriptions matching the original Chat tool exactly CHAT_FIELD_DESCRIPTIONS = { "prompt": ( "Your question or idea for collaborative thinking to be sent to the external model. Provide detailed context, " "including your goal, what you've tried, and any specific challenges. " "WARNING: Large inline code must NOT be shared in prompt. Provide full-path to files on disk as separate parameter." ), "absolute_file_paths": ("Full, absolute file paths to relevant code in order to share with external model"), "images": "Image paths (absolute) or base64 strings for optional visual context.", "working_directory_absolute_path": ( "Absolute path to an existing directory where generated code artifacts can be saved." ), } class ChatRequest(ToolRequest): """Request model for Chat tool""" prompt: str = Field(..., description=CHAT_FIELD_DESCRIPTIONS["prompt"]) absolute_file_paths: Optional[list[str]] = Field( default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["absolute_file_paths"], ) images: Optional[list[str]] = Field(default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["images"]) working_directory_absolute_path: str = Field( ..., description=CHAT_FIELD_DESCRIPTIONS["working_directory_absolute_path"], ) class ChatTool(SimpleTool): """ General development chat and collaborative thinking tool using SimpleTool architecture. This tool provides identical functionality to the original Chat tool but uses the new SimpleTool architecture for cleaner code organization and better maintainability. Migration note: This tool is designed to be a drop-in replacement for the original Chat tool with 100% behavioral compatibility. """ def __init__(self) -> None: super().__init__() self._last_recordable_response: Optional[str] = None def get_name(self) -> str: return "chat" def get_description(self) -> str: return ( "General chat and collaborative thinking partner for brainstorming, development discussion, " "getting second opinions, and exploring ideas. Use for ideas, validations, questions, and thoughtful explanations." ) def get_annotations(self) -> Optional[dict[str, Any]]: """Chat writes generated artifacts when code-generation is enabled.""" return {"readOnlyHint": False} def get_system_prompt(self) -> str: return CHAT_PROMPT def get_capability_system_prompts(self, capabilities: Optional["ModelCapabilities"]) -> list[str]: prompts = list(super().get_capability_system_prompts(capabilities)) if capabilities and capabilities.allow_code_generation: prompts.append(GENERATE_CODE_PROMPT) return prompts def get_default_temperature(self) -> float: return TEMPERATURE_BALANCED def get_model_category(self) -> "ToolModelCategory": """Chat prioritizes fast responses and cost efficiency""" from tools.models import ToolModelCategory return ToolModelCategory.FAST_RESPONSE def get_request_model(self): """Return the Chat-specific request model""" return ChatRequest # === Schema Generation Utilities === def get_input_schema(self) -> dict[str, Any]: """Generate input schema matching the original Chat tool expectations.""" required_fields = ["prompt", "working_directory_absolute_path"] if self.is_effective_auto_mode(): required_fields.append("model") schema = { "type": "object", "properties": { "prompt": { "type": "string", "description": CHAT_FIELD_DESCRIPTIONS["prompt"], }, "absolute_file_paths": { "type": "array", "items": {"type": "string"}, "description": CHAT_FIELD_DESCRIPTIONS["absolute_file_paths"], }, "images": { "type": "array", "items": {"type": "string"}, "description": CHAT_FIELD_DESCRIPTIONS["images"], }, "working_directory_absolute_path": { "type": "string", "description": CHAT_FIELD_DESCRIPTIONS["working_directory_absolute_path"], }, "model": self.get_model_field_schema(), "temperature": { "type": "number", "description": COMMON_FIELD_DESCRIPTIONS["temperature"], "minimum": 0, "maximum": 1, }, "thinking_mode": { "type": "string", "enum": ["minimal", "low", "medium", "high", "max"], "description": COMMON_FIELD_DESCRIPTIONS["thinking_mode"], }, "continuation_id": { "type": "string", "description": COMMON_FIELD_DESCRIPTIONS["continuation_id"], }, }, "required": required_fields, "additionalProperties": False, } return schema def get_tool_fields(self) -> dict[str, dict[str, Any]]: """Tool-specific field definitions used by SimpleTool scaffolding.""" return { "prompt": { "type": "string", "description": CHAT_FIELD_DESCRIPTIONS["prompt"], }, "absolute_file_paths": { "type": "array", "items": {"type": "string"}, "description": CHAT_FIELD_DESCRIPTIONS["absolute_file_paths"], }, "images": { "type": "array", "items": {"type": "string"}, "description": CHAT_FIELD_DESCRIPTIONS["images"], }, "working_directory_absolute_path": { "type": "string", "description": CHAT_FIELD_DESCRIPTIONS["working_directory_absolute_path"], }, } def get_required_fields(self) -> list[str]: """Required fields for ChatSimple tool""" return ["prompt", "working_directory_absolute_path"] # === Hook Method Implementations === async def prepare_prompt(self, request: ChatRequest) -> str: """ Prepare the chat prompt with optional context files. This implementation matches the original Chat tool exactly while using SimpleTool convenience methods for cleaner code. """ # Use SimpleTool's Chat-style prompt preparation return self.prepare_chat_style_prompt(request) def _validate_file_paths(self, request) -> Optional[str]: """Extend validation to cover the working directory path.""" files = self.get_request_files(request) if files: expanded_files: list[str] = [] for file_path in files: expanded = os.path.expanduser(file_path) if not os.path.isabs(expanded): return ( "Error: All file paths must be FULL absolute paths to real files / folders - DO NOT SHORTEN. " f"Received: {file_path}" ) expanded_files.append(expanded) self.set_request_files(request, expanded_files) error = super()._validate_file_paths(request) if error: return error working_directory = request.working_directory_absolute_path if working_directory: expanded = os.path.expanduser(working_directory) if not os.path.isabs(expanded): return ( "Error: 'working_directory_absolute_path' must be an absolute path (you may use '~' which will be expanded). " f"Received: {working_directory}" ) if not os.path.isdir(expanded): return ( "Error: 'working_directory_absolute_path' must reference an existing directory. " f"Received: {working_directory}" ) return None def format_response(self, response: str, request: ChatRequest, model_info: Optional[dict] = None) -> str: """ Format the chat response to match the original Chat tool exactly. """ self._last_recordable_response = None body = response recordable_override: Optional[str] = None if self._model_supports_code_generation(): block, remainder, _ = self._extract_generated_code_block(response) if block: sanitized_text = remainder.strip() target_directory = request.working_directory_absolute_path try: artifact_path = self._persist_generated_code_block(block, target_directory) except Exception as exc: # pragma: no cover - rare filesystem failures logger.error("Failed to persist generated code block: %s", exc, exc_info=True) warning = ( f"WARNING: Unable to write pal_generated.code inside '{target_directory}'. " "Check the path permissions and re-run. The generated code block is included below for manual handling." ) history_copy_base = sanitized_text history_copy = self._join_sections(history_copy_base, warning) if history_copy_base else warning recordable_override = history_copy sanitized_warning = history_copy.strip() body = f"{sanitized_warning}\n\n{block.strip()}".strip() else: if not sanitized_text: base_message = ( "Generated code saved to pal_generated.code.\n" "\n" "CRITICAL: Contains mixed instructions + partial snippets - NOT complete code to copy as-is!\n" "\n" "You MUST:\n" " 1. Read as a proposal from partial context - you may need to read the file in sections\n" " 2. Implement ideas using YOUR complete codebase context and understanding\n" " 3. Never paste wholesale - snippets may be partial with missing lines, pasting will corrupt your code!\n" " 4. Adapt to fit your actual structure and style\n" " 5. Build/lint/test after implementation to verify correctness\n" "\n" "Treat as guidance to implement thoughtfully, not ready-to-paste code." ) sanitized_text = base_message instruction = self._build_agent_instruction(artifact_path) body = self._join_sections(sanitized_text, instruction) final_output = ( f"{body}\n\n---\n\nAGENT'S TURN: Evaluate this perspective alongside your analysis to " "form a comprehensive solution and continue with the user's request and task at hand." ) if recordable_override is not None: self._last_recordable_response = ( f"{recordable_override}\n\n---\n\nAGENT'S TURN: Evaluate this perspective alongside your analysis to " "form a comprehensive solution and continue with the user's request and task at hand." ) else: self._last_recordable_response = final_output return final_output def _record_assistant_turn( self, continuation_id: str, response_text: str, request, model_info: Optional[dict] ) -> None: recordable = self._last_recordable_response if self._last_recordable_response is not None else response_text try: super()._record_assistant_turn(continuation_id, recordable, request, model_info) finally: self._last_recordable_response = None def _model_supports_code_generation(self) -> bool: context = getattr(self, "_model_context", None) if not context: return False try: capabilities = context.capabilities except Exception: # pragma: no cover - defensive fallback return False return bool(capabilities.allow_code_generation) def _extract_generated_code_block(self, text: str) -> tuple[Optional[str], str, int]: matches = list(re.finditer(r"<GENERATED-CODE>.*?</GENERATED-CODE>", text, flags=re.DOTALL | re.IGNORECASE)) if not matches: return None, text, 0 last_match = matches[-1] block = last_match.group(0).strip() # Merge the text before and after the final block while trimming excess whitespace before = text[: last_match.start()] after = text[last_match.end() :] remainder = self._join_sections(before, after) return block, remainder, len(matches) def _persist_generated_code_block(self, block: str, working_directory: str) -> Path: expanded = os.path.expanduser(working_directory) target_dir = Path(expanded).resolve() if not target_dir.is_dir(): raise FileNotFoundError(f"Absolute working directory path '{working_directory}' does not exist") target_file = target_dir / "pal_generated.code" if target_file.exists(): try: target_file.unlink() except OSError as exc: logger.warning("Unable to remove existing pal_generated.code: %s", exc) content = block if block.endswith("\n") else f"{block}\n" target_file.write_text(content, encoding="utf-8") logger.info("Generated code artifact written to %s", target_file) return target_file @staticmethod def _build_agent_instruction(artifact_path: Path) -> str: return ( f"CONTINUING FROM PREVIOUS DISCUSSION: Implementation plan saved to `{artifact_path}`.\n" "\n" f"CRITICAL WARNING: `{artifact_path}` may contain partial code snippets from another AI with limited context. " "Wholesale copy-pasting MAY CORRUPT your codebase with incomplete logic and missing lines.\n" "\n" "Required workflow:\n" "1. For <UPDATED_EXISTING_FILE:...> blocks: Partial excerpts only. Understand the intent and implement using YOUR full context. " "DO NOT copy wholesale - adapt ideas to fit actual structure.\n" "2. For <NEWFILE:...> blocks: Understand proposal and create properly. Verify completeness (imports, syntax, logic).\n" "3. Validation: After ALL changes, verify correctness using available tools (build/compile, linters, tests, type checks, etc.).\n" f"4. Cleanup: After you're done reading and applying changes, delete `{artifact_path}` once verified to prevent stale instructions.\n" "\n" "Treat this as a patch-set requiring manual integration, not ready-to-paste code. You have full codebase context - use it." ) @staticmethod def _join_sections(*sections: str) -> str: chunks: list[str] = [] for section in sections: if section: trimmed = section.strip() if trimmed: chunks.append(trimmed) return "\n\n".join(chunks) def get_websearch_guidance(self) -> str: """ Return Chat tool-style web search guidance. """ return self.get_chat_style_websearch_guidance() logger = logging.getLogger(__name__)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/zen-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server