Skip to main content
Glama
test_image_support_integration.py21 kB
""" Integration tests for native image support feature. Tests the complete image support pipeline: - Conversation memory integration with images - Tool request validation and schema support - Provider image processing capabilities - Cross-tool image context preservation """ import os import tempfile import uuid from unittest.mock import Mock, patch import pytest from tools.chat import ChatTool from tools.debug import DebugIssueTool from tools.shared.exceptions import ToolExecutionError from utils.conversation_memory import ( ConversationTurn, ThreadContext, add_turn, create_thread, get_conversation_image_list, get_thread, ) from utils.model_context import ModelContext @pytest.mark.no_mock_provider class TestImageSupportIntegration: """Integration tests for the complete image support feature.""" def test_conversation_turn_includes_images(self): """Test that ConversationTurn can store and track images.""" turn = ConversationTurn( role="user", content="Please analyze this diagram", timestamp="2025-01-01T00:00:00Z", files=["code.py"], images=["diagram.png", "flowchart.jpg"], tool_name="chat", ) assert turn.images == ["diagram.png", "flowchart.jpg"] assert turn.files == ["code.py"] assert turn.content == "Please analyze this diagram" def test_get_conversation_image_list_newest_first(self): """Test that image list prioritizes newest references.""" # Create thread context with multiple turns context = ThreadContext( thread_id=str(uuid.uuid4()), created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:00:00Z", tool_name="chat", turns=[ ConversationTurn( role="user", content="Turn 1", timestamp="2025-01-01T00:00:00Z", images=["old_diagram.png", "shared.png"], ), ConversationTurn( role="assistant", content="Turn 2", timestamp="2025-01-01T01:00:00Z", images=["middle.png"] ), ConversationTurn( role="user", content="Turn 3", timestamp="2025-01-01T02:00:00Z", images=["shared.png", "new_diagram.png"], # shared.png appears again ), ], initial_context={}, ) image_list = get_conversation_image_list(context) # Should prioritize newest first, with duplicates removed (newest wins) expected = ["shared.png", "new_diagram.png", "middle.png", "old_diagram.png"] assert image_list == expected @patch("utils.conversation_memory.get_storage") def test_add_turn_with_images(self, mock_storage): """Test adding a conversation turn with images.""" mock_client = Mock() mock_storage.return_value = mock_client # Mock the Redis operations to return success mock_client.set.return_value = True thread_id = create_thread("test_tool", {"initial": "context"}) # Set up initial thread context for add_turn to find initial_context = ThreadContext( thread_id=thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:00:00Z", tool_name="test_tool", turns=[], # Empty initially initial_context={"initial": "context"}, ) mock_client.get.return_value = initial_context.model_dump_json() success = add_turn( thread_id=thread_id, role="user", content="Analyze these screenshots", files=["app.py"], images=["screenshot1.png", "screenshot2.png"], tool_name="debug", ) assert success # Mock thread context for get_thread call updated_context = ThreadContext( thread_id=thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:00:00Z", tool_name="test_tool", turns=[ ConversationTurn( role="user", content="Analyze these screenshots", timestamp="2025-01-01T00:00:00Z", files=["app.py"], images=["screenshot1.png", "screenshot2.png"], tool_name="debug", ) ], initial_context={"initial": "context"}, ) mock_client.get.return_value = updated_context.model_dump_json() # Retrieve and verify the thread context = get_thread(thread_id) assert context is not None assert len(context.turns) == 1 turn = context.turns[0] assert turn.images == ["screenshot1.png", "screenshot2.png"] assert turn.files == ["app.py"] assert turn.content == "Analyze these screenshots" def test_chat_tool_schema_includes_images(self): """Test that ChatTool schema includes images field.""" tool = ChatTool() schema = tool.get_input_schema() assert "images" in schema["properties"] images_field = schema["properties"]["images"] assert images_field["type"] == "array" assert images_field["items"]["type"] == "string" assert "visual context" in images_field["description"].lower() def test_debug_tool_schema_includes_images(self): """Test that DebugIssueTool schema includes images field.""" tool = DebugIssueTool() schema = tool.get_input_schema() assert "images" in schema["properties"] images_field = schema["properties"]["images"] assert images_field["type"] == "array" assert images_field["items"]["type"] == "string" assert "screenshots" in images_field["description"].lower() def test_tool_image_validation_limits(self): """Test that tools validate image size limits using real provider resolution.""" tool = ChatTool() # Create small test images (each 0.5MB, total 1MB) small_images = [] for _ in range(2): with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: # Write 0.5MB of data temp_file.write(b"\x00" * (512 * 1024)) small_images.append(temp_file.name) try: # Test with an invalid model name that doesn't exist in any provider # Use model_context parameter name (not positional) result = tool._validate_image_limits(small_images, model_context=ModelContext("non-existent-model-12345")) # Should return error because model not available or doesn't support images assert result is not None assert result["status"] == "error" assert "is not available" in result["content"] or "does not support image processing" in result["content"] # Test that empty/None images always pass regardless of model result = tool._validate_image_limits([], model_context=ModelContext("gemini-2.5-pro")) assert result is None result = tool._validate_image_limits(None, model_context=ModelContext("gemini-2.5-pro")) assert result is None finally: # Clean up temp files for img_path in small_images: if os.path.exists(img_path): os.unlink(img_path) def test_image_validation_model_specific_limits(self): """Test that different models have appropriate size limits using real provider resolution.""" tool = ChatTool() # Test with Gemini model which has better image support in test environment # Create 15MB image (under default limits) small_image_path = None large_image_path = None try: # Create 15MB image with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: temp_file.write(b"\x00" * (15 * 1024 * 1024)) # 15MB small_image_path = temp_file.name # Test with the default model from test environment (gemini-2.5-flash) result = tool._validate_image_limits([small_image_path], ModelContext("gemini-2.5-flash")) assert result is None # Should pass for Gemini models # Create 150MB image (over typical limits) with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: temp_file.write(b"\x00" * (150 * 1024 * 1024)) # 150MB large_image_path = temp_file.name result = tool._validate_image_limits([large_image_path], ModelContext("gemini-2.5-flash")) # Large images should fail validation assert result is not None assert result["status"] == "error" assert "Image size limit exceeded" in result["content"] finally: # Clean up temp files if small_image_path and os.path.exists(small_image_path): os.unlink(small_image_path) if large_image_path and os.path.exists(large_image_path): os.unlink(large_image_path) @pytest.mark.asyncio async def test_chat_tool_execution_with_images(self): """Test that ChatTool can execute with images parameter using real provider resolution.""" import importlib # Create a temporary image file for testing with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: # Write a simple PNG header (minimal valid PNG) png_header = b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x06\x00\x00\x00\x1f\x15\xc4\x89\x00\x00\x00\rIDATx\x9cc\x00\x01\x00\x00\x05\x00\x01\r\n-\xdb\x00\x00\x00\x00IEND\xaeB`\x82" temp_file.write(png_header) temp_image_path = temp_file.name # Save original environment original_env = { "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"), "DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"), } try: # Set up environment for real provider resolution os.environ["OPENAI_API_KEY"] = "sk-test-key-images-test-not-real" os.environ["DEFAULT_MODEL"] = "gpt-4o" # Clear other provider keys to isolate to OpenAI for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]: os.environ.pop(key, None) # Reload config and clear registry import config importlib.reload(config) from providers.registry import ModelProviderRegistry ModelProviderRegistry._instance = None tool = ChatTool() # Test with real provider resolution with tempfile.TemporaryDirectory() as working_directory: with pytest.raises(ToolExecutionError) as exc_info: await tool.execute( { "prompt": "What do you see in this image?", "images": [temp_image_path], "model": "gpt-4o", "working_directory_absolute_path": working_directory, } ) error_msg = exc_info.value.payload if hasattr(exc_info.value, "payload") else str(exc_info.value) # Should NOT be a mock-related error assert "MagicMock" not in error_msg assert "'<' not supported between instances" not in error_msg # Should be a real provider error (API key or network) assert any( phrase in error_msg for phrase in ["API", "key", "authentication", "provider", "network", "connection", "401", "403"] ) finally: # Clean up temp file os.unlink(temp_image_path) # Restore environment for key, value in original_env.items(): if value is not None: os.environ[key] = value else: os.environ.pop(key, None) # Reload config and clear registry importlib.reload(config) ModelProviderRegistry._instance = None @patch("utils.conversation_memory.get_storage") def test_cross_tool_image_context_preservation(self, mock_storage): """Test that images are preserved across different tools in conversation.""" mock_client = Mock() mock_storage.return_value = mock_client # Mock the Redis operations to return success mock_client.set.return_value = True # Create initial thread with chat tool thread_id = create_thread("chat", {"initial": "context"}) # Set up initial thread context for add_turn to find initial_context = ThreadContext( thread_id=thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:00:00Z", tool_name="chat", turns=[], # Empty initially initial_context={"initial": "context"}, ) mock_client.get.return_value = initial_context.model_dump_json() # Add turn with images from chat tool add_turn( thread_id=thread_id, role="user", content="Here's my UI design", images=["design.png", "mockup.jpg"], tool_name="chat", ) add_turn( thread_id=thread_id, role="assistant", content="I can see your design. It looks good!", tool_name="chat" ) # Add turn with different images from debug tool add_turn( thread_id=thread_id, role="user", content="Now I'm getting this error", images=["error_screen.png"], files=["error.log"], tool_name="debug", ) # Mock complete thread context for get_thread call complete_context = ThreadContext( thread_id=thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:05:00Z", tool_name="chat", turns=[ ConversationTurn( role="user", content="Here's my UI design", timestamp="2025-01-01T00:01:00Z", images=["design.png", "mockup.jpg"], tool_name="chat", ), ConversationTurn( role="assistant", content="I can see your design. It looks good!", timestamp="2025-01-01T00:02:00Z", tool_name="chat", ), ConversationTurn( role="user", content="Now I'm getting this error", timestamp="2025-01-01T00:03:00Z", images=["error_screen.png"], files=["error.log"], tool_name="debug", ), ], initial_context={"initial": "context"}, ) mock_client.get.return_value = complete_context.model_dump_json() # Retrieve thread and check image preservation context = get_thread(thread_id) assert context is not None # Get conversation image list (should prioritize newest first) image_list = get_conversation_image_list(context) expected = ["error_screen.png", "design.png", "mockup.jpg"] assert image_list == expected # Verify each turn has correct images assert context.turns[0].images == ["design.png", "mockup.jpg"] assert context.turns[1].images is None # Assistant turn without images assert context.turns[2].images == ["error_screen.png"] def test_tool_request_base_class_has_images(self): """Test that base ToolRequest class includes images field.""" from tools.shared.base_models import ToolRequest # Create request with images request = ToolRequest(images=["test.png", "test2.jpg"]) assert request.images == ["test.png", "test2.jpg"] # Test default value request_no_images = ToolRequest() assert request_no_images.images is None def test_data_url_image_format_support(self): """Test that tools can handle data URL format images.""" tool = ChatTool() # Test with data URL (base64 encoded 1x1 transparent PNG) data_url = "" images = [data_url] # Test with a dummy model that doesn't exist in any provider result = tool._validate_image_limits(images, ModelContext("test-dummy-model-name")) # Should return error because model not available or doesn't support images assert result is not None assert result["status"] == "error" assert "is not available" in result["content"] or "does not support image processing" in result["content"] # Test with another non-existent model to check error handling result = tool._validate_image_limits(images, ModelContext("another-dummy-model")) # Should return error because model not available assert result is not None assert result["status"] == "error" def test_empty_images_handling(self): """Test that tools handle empty images lists gracefully.""" tool = ChatTool() # Empty list should not fail validation (no need for provider setup) result = tool._validate_image_limits([], ModelContext("gemini-2.5-pro")) assert result is None # None should not fail validation (no need for provider setup) result = tool._validate_image_limits(None, ModelContext("gemini-2.5-pro")) assert result is None @patch("utils.conversation_memory.get_storage") def test_conversation_memory_thread_chaining_with_images(self, mock_storage): """Test that images work correctly with conversation thread chaining.""" mock_client = Mock() mock_storage.return_value = mock_client # Mock the Redis operations to return success mock_client.set.return_value = True # Create parent thread with images parent_thread_id = create_thread("chat", {"parent": "context"}) # Set up initial parent thread context for add_turn to find parent_context = ThreadContext( thread_id=parent_thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:00:00Z", tool_name="chat", turns=[], # Empty initially initial_context={"parent": "context"}, ) mock_client.get.return_value = parent_context.model_dump_json() add_turn( thread_id=parent_thread_id, role="user", content="Parent thread with images", images=["parent1.png", "shared.png"], tool_name="chat", ) # Create child thread linked to parent using a simple tool child_thread_id = create_thread("chat", {"prompt": "child context"}, parent_thread_id=parent_thread_id) add_turn( thread_id=child_thread_id, role="user", content="Child thread with more images", images=["child1.png", "shared.png"], # shared.png appears again (should prioritize newer) tool_name="chat", ) # Mock child thread context for get_thread call child_context = ThreadContext( thread_id=child_thread_id, created_at="2025-01-01T00:00:00Z", last_updated_at="2025-01-01T00:02:00Z", tool_name="debug", turns=[ ConversationTurn( role="user", content="Child thread with more images", timestamp="2025-01-01T00:02:00Z", images=["child1.png", "shared.png"], tool_name="debug", ) ], initial_context={"child": "context"}, parent_thread_id=parent_thread_id, ) mock_client.get.return_value = child_context.model_dump_json() # Get child thread and verify image collection works across chain child_context = get_thread(child_thread_id) assert child_context is not None assert child_context.parent_thread_id == parent_thread_id # Test image collection for child thread only child_images = get_conversation_image_list(child_context) assert child_images == ["child1.png", "shared.png"]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/zen-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server