Skip to main content
Glama

Gemini MCP Server

custom.pyโ€ข986 B
"""Registry loader for custom OpenAI-compatible endpoints.""" from __future__ import annotations from ..shared import ModelCapabilities, ProviderType from .base import CAPABILITY_FIELD_NAMES, CapabilityModelRegistry class CustomEndpointModelRegistry(CapabilityModelRegistry): """Capability registry backed by ``conf/custom_models.json``.""" def __init__(self, config_path: str | None = None) -> None: super().__init__( env_var_name="CUSTOM_MODELS_CONFIG_PATH", default_filename="custom_models.json", provider=ProviderType.CUSTOM, friendly_prefix="Custom ({model})", config_path=config_path, ) def _finalise_entry(self, entry: dict) -> tuple[ModelCapabilities, dict]: filtered = {k: v for k, v in entry.items() if k in CAPABILITY_FIELD_NAMES} filtered.setdefault("provider", ProviderType.CUSTOM) capability = ModelCapabilities(**filtered) return capability, {}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server