Skip to main content
Glama

Gemini MCP Server

azure.pyโ€ข1.7 kB
"""Registry loader for Azure OpenAI model configurations.""" from __future__ import annotations import logging from ..shared import ModelCapabilities, ProviderType, TemperatureConstraint from .base import CAPABILITY_FIELD_NAMES, CustomModelRegistryBase logger = logging.getLogger(__name__) class AzureModelRegistry(CustomModelRegistryBase): """Load Azure-specific model metadata from configuration files.""" def __init__(self, config_path: str | None = None) -> None: super().__init__( env_var_name="AZURE_MODELS_CONFIG_PATH", default_filename="azure_models.json", config_path=config_path, ) self.reload() def _extra_keys(self) -> set[str]: return {"deployment", "deployment_name"} def _provider_default(self) -> ProviderType: return ProviderType.AZURE def _default_friendly_name(self, model_name: str) -> str: return f"Azure OpenAI ({model_name})" def _finalise_entry(self, entry: dict) -> tuple[ModelCapabilities, dict]: deployment = entry.pop("deployment", None) or entry.pop("deployment_name", None) if not deployment: raise ValueError(f"Azure model '{entry.get('model_name')}' is missing required 'deployment' field") temp_hint = entry.get("temperature_constraint") if isinstance(temp_hint, str): entry["temperature_constraint"] = TemperatureConstraint.create(temp_hint) filtered = {k: v for k, v in entry.items() if k in CAPABILITY_FIELD_NAMES} filtered.setdefault("provider", ProviderType.AZURE) capability = ModelCapabilities(**filtered) return capability, {"deployment": deployment}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server