Skip to main content
Glama

Gemini MCP Server

adding_tools.mdโ€ข8.25 kB
# Adding Tools to Zen MCP Server Zen MCP tools are Python classes that inherit from the shared infrastructure in `tools/shared/base_tool.py`. Every tool must provide a request model (Pydantic), a system prompt, and the methods the base class marks as abstract. The quickest path to a working tool is to copy an existing implementation that matches your use case (`tools/chat.py` for simple request/response tools, `tools/consensus.py` or `tools/codereview.py` for workflows). This document captures the minimal steps required to add a new tool without drifting from the current codebase. ## 1. Pick the Tool Architecture Zen supports two architectures, implemented in `tools/simple/base.py` and `tools/workflow/base.py`. - **SimpleTool** (`SimpleTool`): single MCP call โ€“ request comes in, you build one prompt, call the model, return. The base class handles schema generation, conversation threading, file loading, temperature bounds, retries, and response formatting hooks. - **WorkflowTool** (`WorkflowTool`): multi-step workflows driven by `BaseWorkflowMixin`. The tool accumulates findings across steps, forces Claude to pause between investigations, and optionally calls an expert model at the end. Use this whenever you need structured multi-step work (debug, code review, consensus, etc.). If you are unsure, compare `tools/chat.py` (SimpleTool) and `tools/consensus.py` (WorkflowTool) to see the patterns. ## 2. Common Responsibilities Regardless of architecture, subclasses of `BaseTool` must provide: - `get_name()`: unique string identifier used in the MCP registry. - `get_description()`: concise, action-oriented summary for clients. - `get_system_prompt()`: import your prompt from `systemprompts/` and return it. - `get_input_schema()`: leverage the schema builders (`SchemaBuilder` or `WorkflowSchemaBuilder`) or override to match an existing contract exactly. - `get_request_model()`: return the Pydantic model used to validate the incoming arguments. - `async prepare_prompt(...)`: assemble the content sent to the model. You can reuse helpers like `prepare_chat_style_prompt` or `build_standard_prompt`. The base class already handles model selection (`ToolModelCategory`), conversation memory, token budgeting, safety failures, retries, and serialization. Override hooks like `get_default_temperature`, `get_model_category`, or `format_response` only when you need behaviour different from the defaults. ## 3. Implementing a Simple Tool 1. **Define a request model** that inherits from `tools.shared.base_models.ToolRequest` to describe the fields and validation rules for your tool. 2. **Implement the tool class** by inheriting from `SimpleTool` and overriding the required methods. Most tools can rely on `SchemaBuilder` and the shared field constants already exposed on `SimpleTool`. ```python from pydantic import Field from systemprompts import CHAT_PROMPT from tools.shared.base_models import ToolRequest from tools.simple.base import SimpleTool class ChatRequest(ToolRequest): prompt: str = Field(..., description="Your question or idea.") files: list[str] | None = Field(default_factory=list) working_directory: str = Field( ..., description="Absolute full directory path where the assistant AI can save generated code for implementation." ) class ChatTool(SimpleTool): def get_name(self) -> str: # required by BaseTool return "chat" def get_description(self) -> str: return "General chat and collaborative thinking partner." def get_system_prompt(self) -> str: return CHAT_PROMPT def get_request_model(self): return ChatRequest def get_tool_fields(self) -> dict[str, dict[str, object]]: return { "prompt": {"type": "string", "description": "Your question."}, "files": SimpleTool.FILES_FIELD, "working_directory": { "type": "string", "description": "Absolute full directory path where the assistant AI can save generated code for implementation.", }, } def get_required_fields(self) -> list[str]: return ["prompt", "working_directory"] async def prepare_prompt(self, request: ChatRequest) -> str: return self.prepare_chat_style_prompt(request) ``` Only implement `get_input_schema()` manually if you must preserve an existing schema contract (see `tools/chat.py` for an example). Otherwise `SimpleTool.get_input_schema()` merges your field definitions with the common parameters (temperature, model, continuation_id, etc.). ## 4. Implementing a Workflow Tool Workflow tools extend `WorkflowTool`, which mixes in `BaseWorkflowMixin` for step tracking and expert analysis. 1. **Create a request model** that inherits from `tools.shared.base_models.WorkflowRequest` (or a subclass) and add any tool-specific fields or validators. Examples: `CodeReviewRequest`, `ConsensusRequest`. 2. **Override the workflow hooks** to steer the investigation. At minimum you must implement `get_required_actions(...)`; override `should_call_expert_analysis(...)` and `prepare_expert_analysis_context(...)` when the expert model call should happen conditionally. 3. **Expose the schema** either by returning `WorkflowSchemaBuilder.build_schema(...)` (the default implementation on `WorkflowTool` already does this) or by overriding `get_input_schema()` if you need custom descriptions/enums. ```python from pydantic import Field from systemprompts import CONSENSUS_PROMPT from tools.shared.base_models import WorkflowRequest from tools.workflow.base import WorkflowTool class ConsensusRequest(WorkflowRequest): models: list[dict] = Field(..., description="Models to consult (with optional stance).") class ConsensusTool(WorkflowTool): def get_name(self) -> str: return "consensus" def get_description(self) -> str: return "Multi-model consensus workflow with expert synthesis." def get_system_prompt(self) -> str: return CONSENSUS_PROMPT def get_workflow_request_model(self): return ConsensusRequest def get_required_actions(self, step_number: int, confidence: str, findings: str, total_steps: int, request=None) -> list[str]: if step_number == 1: return ["Write the shared proposal all models will evaluate."] return ["Summarize the latest model response before moving on."] def should_call_expert_analysis(self, consolidated_findings, request=None) -> bool: return not (request and request.next_step_required) def prepare_expert_analysis_context(self, consolidated_findings) -> str: return "\n".join(consolidated_findings.findings) ``` `WorkflowTool` already records work history, merges findings, and handles continuation IDs. Use helpers such as `get_standard_required_actions` when you want default guidance, and override `requires_expert_analysis()` if the tool never calls out to the assistant model. ## 5. Register the Tool 1. **Create or reuse a system prompt** in `systemprompts/your_tool_prompt.py` and export it from `systemprompts/__init__.py`. 2. **Expose the tool class** from `tools/__init__.py` so that `server.py` can import it. 3. **Add an instance to the `TOOLS` dictionary** in `server.py`. This makes the tool callable via MCP. 4. **(Optional) Add a prompt template** to `PROMPT_TEMPLATES` in `server.py` if you want clients to show a canned launch command. 5. Confirm that `DISABLED_TOOLS` environment variable handling covers the new tool if you need to toggle it. ## 6. Validate the Tool - Run unit tests that cover any new request/response logic: `python -m pytest tests/ -v -m "not integration"`. - Add a simulator scenario in `simulator_tests/communication_simulator_test.py` to exercise the tool end-to-end and run it with `python communication_simulator_test.py --individual <case>` or `--quick` for the fast smoke suite. - If the tool interacts with external providers or multiple models, consider integration coverage via `./run_integration_tests.sh --with-simulator`. Following the steps above keeps new tools aligned with the existing infrastructure and avoids drift between the documentation and the actual base classes.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server