Skip to main content
Glama

EnriVision

EnriVision is a Model Context Protocol (MCP) server over stdio that uploads local media to EnriProxy and returns server-side extraction + model analysis.

This is useful for media types that many MCP clients cannot read reliably (videos, audio, scanned PDFs, HEIC/AVIF, large files), while keeping the MCP server itself lightweight.

What this project is

  • An MCP server process your MCP host launches (OpenCode, Claude Code, Codex, etc.)

  • A thin client for EnriProxy (resumable upload + structured output)

Requirements

  • Node.js >= 22 (recommended: Node 24 LTS)

  • A reachable EnriProxy server with these endpoints enabled:

    • POST /v1/uploads

    • HEAD /v1/uploads/:id

    • PATCH /v1/uploads/:id

    • POST /v1/vision/analyze

  • An EnriProxy API key (configured on the EnriProxy side)

Install

# Global install npm install -g @bedolla/enrivision # Or run without installing npx -y @bedolla/enrivision@latest --help

Build

npm install npm run typecheck npm run build

Usage

1) Configure your MCP host

EnriVision runs as an MCP server over stdio. Your MCP host is responsible for launching the process.

Example: global install

{ "EnriVision": { "type": "stdio", "command": "enrivision", "args": [], "env": { "ENRIPROXY_URL": "http://127.0.0.1:8787", "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY", "ENRIVISION_DEFAULT_LANGUAGE": "es" } } }

Example: no install (always uses whatever npm currently tags as latest)

{ "EnriVision": { "type": "stdio", "command": "npx", "args": ["-y", "@bedolla/enrivision@latest"], "env": { "ENRIPROXY_URL": "http://127.0.0.1:8787", "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY", "ENRIVISION_DEFAULT_LANGUAGE": "es" } } }
{ "EnriVision": { "type": "stdio", "command": "node", "args": ["C:\\\\Users\\\\Administrator\\\\Projects\\\\EnriVision\\\\dist\\\\index.js"], "env": { "ENRIPROXY_URL": "http://127.0.0.1:8787", "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY", "ENRIVISION_DEFAULT_LANGUAGE": "es" } } }

Configuration

EnriVision is configured via environment variables:

  • ENRIPROXY_URL (string, optional, default: http://127.0.0.1:8787)

  • ENRIPROXY_API_KEY (string, required)

  • ENRIVISION_TIMEOUT_MS (string, optional, default: 1800000)

    • Parsed as an integer (milliseconds). Uploads are performed in chunks; this timeout applies per request.

  • ENRIVISION_DEFAULT_LANGUAGE (string, optional)

    • Default language to send when the tool call does not provide language.

MCP tools

EnriVision exposes this MCP tool:

  • analyze_media

General notes:

  • The tool accepts a single JSON object as its input (the MCP arguments).

  • Exactly one of path or paths is required.

  • Paths must be absolute on the machine running the MCP server.

  • EnriVision does not accept per-call server_url/api_key overrides (these are configured via env vars).

analyze_media

Inputs:

  • path (string, optional): absolute local file path.

  • paths (string[], optional): absolute local image paths (useful for UI screenshot sets).

  • context (string, optional): high-level hint (examples: ui, diagram, chart, error, code, meeting, tutorial, photo).

  • question (string, optional): what you want to extract/answer.

  • language (string, optional): preferred response language (ISO 639-1; e.g., es, en). If omitted, uses ENRIVISION_DEFAULT_LANGUAGE when set.

  • analysis_mode (string, optional): auto | single | multipass.

  • max_frames (number, optional): single-pass video frames (1..20).

  • transcribe (boolean, optional): enable/disable transcription (videos).

  • transcription_language (string, optional): whisper hint (auto, es, en, ...).

Video targeting:

  • video.clip_start_seconds (number, optional)

  • video.clip_duration_seconds (number, optional)

Multipass tuning (advanced; used only for analysis_mode: multipass):

  • video.segment_seconds (number, optional)

  • video.max_segments (number, optional)

  • video.max_frames_per_segment (number, optional)

  • document.max_pages_total (number, optional)

  • document.pages_per_batch (number, optional)

  • document.max_images_per_batch (number, optional)

  • document.scanned_text_threshold_chars (number, optional)

  • audio.timestamps (boolean, optional)

  • audio.segment_seconds (number, optional)

  • audio.max_segments (number, optional)

  • images.max_images_total (number, optional)

  • images.images_per_batch (number, optional)

  • images.max_dimension (number, optional)

Output:

  • analysis (string): model-produced analysis.

  • media_type (string): detected media type (video, audio, image, document, image_set).

  • extraction (object): safe metadata summary (internal routing details are stripped).

Example arguments object:

{ "path": "C:\\\\path\\\\to\\\\video.mp4", "question": "What are the key steps demonstrated?", "analysis_mode": "auto", "transcribe": true, "language": "es" }

Many MCP clients include a built-in Read(...) tool that can ingest local files and attach them to the model request. This is convenient, but the set of supported formats is limited and can change across client versions.

If the file you need to analyze is not reliably supported by your client (for example .avif, .heic, .svg, videos, audio, or Office documents), prefer EnriVision MCP so the client can upload bytes and EnriProxy can do extraction reliably.

EnriProxy determines media type using content-type and extension allow-lists.

Videos:

  • .mp4, .mov, .avi, .mkv, .webm, .m4v, .wmv, .flv, .3gp, .3g2, .ts, .mts, .m2ts, .mpeg, .mpg, .gif

Audio:

  • .mp3, .mp1, .mp2, .mpa, .mpga, .wav, .aiff, .aif, .aifc, .caf, .flac, .m4a, .m4b, .m4r, .aac, .ogg, .oga, .wma, .opus, .weba, .mka

Images:

  • .png, .apng, .jpg, .jpeg, .gif, .webp, .avif, .heic, .heif, .tiff, .tif, .bmp, .svg, .ico

Documents:

  • .pdf, .docx, .pptx, .xlsx, .jsonl

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Bedolla/EnriVision'

If you have feedback or need assistance with the MCP directory API, please join our Discord server