Skip to main content
Glama
AzDeltaQQ
by AzDeltaQQ

mcts_reasoning

Use Monte Carlo Tree Search to break down complex problems into sequential reasoning steps, simulating multiple solution paths for optimal decision-making.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
promptYesThe problem or query to reason about
thoughtYesCurrent reasoning step
thoughtNumberYesCurrent step number
totalThoughtsYesTotal expected steps
nextThoughtNeededYesWhether another step is needed
numSimulationsNoNumber of MCTS simulations to run

Implementation Reference

  • The handler function that implements the core logic of the mcts_reasoning tool. It validates inputs, simulates MCTS reasoning (placeholder), generates next thought if needed, and returns structured JSON response.
    async ({ prompt, thought, thoughtNumber, totalThoughts, nextThoughtNeeded, numSimulations }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } if (!thought) { throw new ValidationError("Current thought is required"); } // In a real implementation, this would connect to an external MCTS algorithm // For now, we'll simulate the reasoning process // Simulated next thought generation based on MCTS let nextThought = ""; if (nextThoughtNeeded) { // Logic for generating next thought would go here // For now, we'll return a simple placeholder nextThought = `MCTS Reasoning (Step ${thoughtNumber + 1}/${totalThoughts}): ` + `Based on previous analysis "${thought.slice(0, 50)}...", ` + `further exploration with ${numSimulations} simulations suggests... ` + `[This would be actual MCTS-based reasoning content]`; } return { content: [ { type: "text", text: JSON.stringify({ strategy: "mcts", originalPrompt: prompt, currentThought: thought, thoughtNumber: thoughtNumber, totalThoughts: totalThoughts, nextThought: nextThought, complete: !nextThoughtNeeded || thoughtNumber >= totalThoughts }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`MCTS reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } }
  • Zod schema defining the input parameters for the mcts_reasoning tool, including prompt, current thought, step numbers, and MCTS-specific parameters.
    { prompt: z.string().describe("The problem or query to reason about"), thought: z.string().describe("Current reasoning step"), thoughtNumber: z.number().int().min(1).describe("Current step number"), totalThoughts: z.number().int().min(1).describe("Total expected steps"), nextThoughtNeeded: z.boolean().describe("Whether another step is needed"), numSimulations: z.number().int().min(1).max(150).default(50).describe("Number of MCTS simulations to run")
  • The server.tool call that registers the mcts_reasoning tool with its input schema and handler function on the MCP server.
    server.tool( "mcts_reasoning", { prompt: z.string().describe("The problem or query to reason about"), thought: z.string().describe("Current reasoning step"), thoughtNumber: z.number().int().min(1).describe("Current step number"), totalThoughts: z.number().int().min(1).describe("Total expected steps"), nextThoughtNeeded: z.boolean().describe("Whether another step is needed"), numSimulations: z.number().int().min(1).max(150).default(50).describe("Number of MCTS simulations to run") }, async ({ prompt, thought, thoughtNumber, totalThoughts, nextThoughtNeeded, numSimulations }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } if (!thought) { throw new ValidationError("Current thought is required"); } // In a real implementation, this would connect to an external MCTS algorithm // For now, we'll simulate the reasoning process // Simulated next thought generation based on MCTS let nextThought = ""; if (nextThoughtNeeded) { // Logic for generating next thought would go here // For now, we'll return a simple placeholder nextThought = `MCTS Reasoning (Step ${thoughtNumber + 1}/${totalThoughts}): ` + `Based on previous analysis "${thought.slice(0, 50)}...", ` + `further exploration with ${numSimulations} simulations suggests... ` + `[This would be actual MCTS-based reasoning content]`; } return { content: [ { type: "text", text: JSON.stringify({ strategy: "mcts", originalPrompt: prompt, currentThought: thought, thoughtNumber: thoughtNumber, totalThoughts: totalThoughts, nextThought: nextThought, complete: !nextThoughtNeeded || thoughtNumber >= totalThoughts }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`MCTS reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } } );
  • src/index.ts:22-22 (registration)
    Invocation of registerReasoningTools which includes registration of mcts_reasoning among other reasoning tools.
    registerReasoningTools(server);
  • Helper function that registers all reasoning tools, including mcts_reasoning, on the MCP server.
    export function registerReasoningTools(server: McpServer) { // Monte Carlo Tree Search (MCTS) tool server.tool( "mcts_reasoning", { prompt: z.string().describe("The problem or query to reason about"), thought: z.string().describe("Current reasoning step"), thoughtNumber: z.number().int().min(1).describe("Current step number"), totalThoughts: z.number().int().min(1).describe("Total expected steps"), nextThoughtNeeded: z.boolean().describe("Whether another step is needed"), numSimulations: z.number().int().min(1).max(150).default(50).describe("Number of MCTS simulations to run") }, async ({ prompt, thought, thoughtNumber, totalThoughts, nextThoughtNeeded, numSimulations }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } if (!thought) { throw new ValidationError("Current thought is required"); } // In a real implementation, this would connect to an external MCTS algorithm // For now, we'll simulate the reasoning process // Simulated next thought generation based on MCTS let nextThought = ""; if (nextThoughtNeeded) { // Logic for generating next thought would go here // For now, we'll return a simple placeholder nextThought = `MCTS Reasoning (Step ${thoughtNumber + 1}/${totalThoughts}): ` + `Based on previous analysis "${thought.slice(0, 50)}...", ` + `further exploration with ${numSimulations} simulations suggests... ` + `[This would be actual MCTS-based reasoning content]`; } return { content: [ { type: "text", text: JSON.stringify({ strategy: "mcts", originalPrompt: prompt, currentThought: thought, thoughtNumber: thoughtNumber, totalThoughts: totalThoughts, nextThought: nextThought, complete: !nextThoughtNeeded || thoughtNumber >= totalThoughts }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`MCTS reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } } ); // Beam Search tool server.tool( "beam_search_reasoning", { prompt: z.string().describe("The problem or query to reason about"), thought: z.string().describe("Current reasoning step"), thoughtNumber: z.number().int().min(1).describe("Current step number"), totalThoughts: z.number().int().min(1).describe("Total expected steps"), nextThoughtNeeded: z.boolean().describe("Whether another step is needed"), beamWidth: z.number().int().min(1).max(10).default(3).describe("Number of top paths to maintain (n-sampling)") }, async ({ prompt, thought, thoughtNumber, totalThoughts, nextThoughtNeeded, beamWidth }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } if (!thought) { throw new ValidationError("Current thought is required"); } // In a real implementation, this would connect to an external Beam Search algorithm // For now, we'll simulate the reasoning process // Simulated next thought generation based on Beam Search let nextThought = ""; if (nextThoughtNeeded) { // Logic for generating next thought would go here // For now, we'll return a simple placeholder nextThought = `Beam Search Reasoning (Step ${thoughtNumber + 1}/${totalThoughts}): ` + `Considering ${beamWidth} alternative paths from "${thought.slice(0, 50)}...", ` + `the most promising direction is... ` + `[This would be actual Beam Search-based reasoning content]`; } return { content: [ { type: "text", text: JSON.stringify({ strategy: "beam_search", originalPrompt: prompt, currentThought: thought, thoughtNumber: thoughtNumber, totalThoughts: totalThoughts, nextThought: nextThought, complete: !nextThoughtNeeded || thoughtNumber >= totalThoughts }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`Beam Search reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } } ); // R1 Transformer-based reasoning tool server.tool( "r1_reasoning", { prompt: z.string().describe("The problem or query to reason about") }, async ({ prompt }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } // In a real implementation, this would connect to an external R1 reasoning system // For now, we'll simulate the reasoning process // Simulated reasoning output const reasoning = `R1 Reasoning Analysis:\n\n` + `For the prompt: "${prompt.slice(0, 100)}...", the analysis is:\n\n` + `1. Initial problem parsing: [Simulated R1 analysis]\n` + `2. Key observation: [Simulated R1 analysis]\n` + `3. Proposed solution approach: [Simulated R1 analysis]\n` + `4. Implementation details: [Simulated R1 analysis]\n` + `5. Verification and testing: [Simulated R1 analysis]\n\n` + `[This would be actual R1 Transformer-based reasoning content]`; return { content: [ { type: "text", text: JSON.stringify({ strategy: "r1_transformer", originalPrompt: prompt, reasoning: reasoning, complete: true }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`R1 reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } } ); // Hybrid Transformer reasoning tool server.tool( "hybrid_reasoning", { prompt: z.string().describe("The problem or query to reason about"), thought: z.string().describe("Current reasoning step"), thoughtNumber: z.number().int().min(1).describe("Current step number"), totalThoughts: z.number().int().min(1).describe("Total expected steps"), nextThoughtNeeded: z.boolean().describe("Whether another step is needed"), numSimulations: z.number().int().min(1).max(150).default(50).describe("Number of MCTS simulations to run") }, async ({ prompt, thought, thoughtNumber, totalThoughts, nextThoughtNeeded, numSimulations }) => { try { // Validate parameters if (!prompt) { throw new ValidationError("Prompt is required"); } if (!thought) { throw new ValidationError("Current thought is required"); } // In a real implementation, this would connect to a hybrid transformer+MCTS system // For now, we'll simulate the reasoning process // Simulated next thought generation based on hybrid approach let nextThought = ""; if (nextThoughtNeeded) { // Logic for generating next thought would go here // For now, we'll return a simple placeholder nextThought = `Hybrid Reasoning (Step ${thoughtNumber + 1}/${totalThoughts}): ` + `Combining transformer analysis with ${numSimulations} MCTS simulations on "${thought.slice(0, 50)}...", ` + `the enhanced analysis suggests... ` + `[This would be actual Hybrid Transformer+MCTS reasoning content]`; } return { content: [ { type: "text", text: JSON.stringify({ strategy: "hybrid_transformer_mcts", originalPrompt: prompt, currentThought: thought, thoughtNumber: thoughtNumber, totalThoughts: totalThoughts, nextThought: nextThought, complete: !nextThoughtNeeded || thoughtNumber >= totalThoughts }, null, 2) } ] }; } catch (error) { if (error instanceof ValidationError) { throw error; } else { throw new ReasoningError(`Hybrid reasoning failed: ${error instanceof Error ? error.message : String(error)}`); } } } ); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AzDeltaQQ/Mcp-Reasoning-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server