Skip to main content
Glama

Flutter Inspector MCP Server

enhancement_suggestions.md8.72 kB
# Dynamic Registry Enhancement Suggestions for AI Agents ## Current State Analysis The dynamic registry feature provides excellent foundations for AI agent workflows but could be enhanced in several key areas: ## 1. Enhanced Tool Discovery and Metadata ### Current Limitation `listClientToolsAndResources` provides basic tool definitions but lacks runtime context. ### Suggested Enhancement Add metadata about tool state, usage frequency, and categorization: ```dart // Enhanced tool registration with metadata final debugToolEntry = MCPCallEntry.tool( handler: debugHandler, definition: MCPToolDefinition( name: 'inspect_widget_state', description: 'Inspect current widget state', inputSchema: {...}, metadata: { 'category': 'debugging', 'priority': 'high', 'usageHint': 'Use when UI behaves unexpectedly', 'estimatedExecutionTime': 'fast', 'sideEffects': false, }, ), ); ``` ### Implementation Extend `MCPToolDefinition` and `DynamicRegistryTools._handleListClientToolsAndResources` to include: - Tool categories (debugging, state, ui, performance) - Execution time estimates - Side effect indicators - Usage recommendations - Last execution timestamp ## 2. Intelligent Tool Suggestion System ### Current Limitation AI agents must manually discover which tools are relevant for specific scenarios. ### Suggested Enhancement Add contextual tool recommendations based on app state: ```dart // New tool for intelligent suggestions static final suggestRelevantTools = Tool( name: 'suggestRelevantTools', description: 'Get tool suggestions based on current app state and context', inputSchema: ObjectSchema( properties: { 'context': Schema.string(description: 'Current debugging context (error, performance, ui)'), 'appState': Schema.object(description: 'Current app state snapshot'), }, ), ); ``` ### Implementation - Analyze current Flutter app state (errors, performance metrics, UI tree) - Return prioritized list of relevant tools - Include reasoning for each suggestion ## 3. Tool Chain Execution ### Current Limitation AI agents must execute tools sequentially, making debugging workflows verbose. ### Suggested Enhancement Enable chained tool execution with dependency management: ```dart // New tool for executing tool chains static final executeToolChain = Tool( name: 'executeToolChain', description: 'Execute a sequence of tools with result passing', inputSchema: ObjectSchema( required: ['toolChain'], properties: { 'toolChain': Schema.array( description: 'Array of tools to execute in sequence', items: Schema.object( properties: { 'toolName': Schema.string(description: 'Tool to execute'), 'arguments': Schema.object(description: 'Tool arguments'), 'resultMapping': Schema.object(description: 'How to pass results to next tool'), }, ), ), }, ), ); ``` ### Example Usage ```json { "name": "executeToolChain", "arguments": { "toolChain": [ { "toolName": "get_widget_info", "arguments": { "widgetId": "button1" } }, { "toolName": "modify_widget_state", "arguments": { "widgetId": "button1", "enabled": false } }, { "toolName": "take_screenshot", "arguments": {} }, { "toolName": "hot_reload_flutter", "arguments": {} } ] } } ``` ## 4. Real-time State Monitoring ### Current Limitation AI agents get point-in-time snapshots but lack continuous monitoring. ### Suggested Enhancement Add subscription-based monitoring for continuous state updates: ```dart // New resource for real-time monitoring static final subscribeToStateChanges = Tool( name: 'subscribeToStateChanges', description: 'Subscribe to real-time app state changes', inputSchema: ObjectSchema( properties: { 'monitors': Schema.array( description: 'Types of changes to monitor', items: Schema.string(enum: ['errors', 'ui_changes', 'navigation', 'performance']), ), 'duration': Schema.integer(description: 'Monitoring duration in seconds'), }, ), ); ``` ### Implementation - Use Flutter's dev tools protocol for real-time updates - Stream changes to AI agents via MCP notifications - Enable proactive debugging based on detected issues ## 5. Code Generation and Hot Injection ### Current Limitation AI agents can only work with pre-registered tools, limiting experimentation. ### Suggested Enhancement Enable dynamic Dart code generation and injection: ```dart // New tool for runtime code injection static final injectDartCode = Tool( name: 'injectDartCode', description: 'Inject and execute Dart code at runtime for experimentation', inputSchema: ObjectSchema( required: ['dartCode'], properties: { 'dartCode': Schema.string(description: 'Dart code to inject and execute'), 'context': Schema.string(description: 'Execution context (widget, service, global)'), 'temporary': Schema.bool(description: 'Whether changes are temporary or persistent'), }, ), ); ``` ### Safety Considerations - Sandbox execution environment - Code validation before injection - Automatic rollback on errors - Clear temporary vs persistent change distinction ## 6. Enhanced Error Context ### Current Limitation Error reporting lacks sufficient context for AI agents to provide meaningful assistance. ### Suggested Enhancement Enrich error reporting with actionable context: ```dart // Enhanced error resource extension type EnhancedErrorResource._(MCPCallEntry entry) implements MCPCallEntry { factory EnhancedErrorResource() { return EnhancedErrorResource._(MCPCallEntry.resource( handler: (request) => MCPCallResult( message: 'Enhanced error information with context', parameters: { 'errors': errors.map((e) => { 'message': e.message, 'stackTrace': e.stackTrace, 'widgetContext': e.widgetContext, 'suggestedFixes': e.suggestedFixes, 'relatedCode': e.relatedCodeSnippets, 'debuggingSteps': e.recommendedDebuggingSteps, }).toList(), }, ), definition: MCPResourceDefinition( name: 'enhanced_errors', description: 'Detailed error information with actionable context', ), )); } } ``` ## 7. Performance Monitoring Integration ### Current Limitation No performance monitoring tools for AI agents to detect and debug performance issues. ### Suggested Enhancement Add comprehensive performance monitoring: ```dart // Performance monitoring tools static final analyzePerformance = Tool( name: 'analyzePerformance', description: 'Analyze app performance and identify bottlenecks', inputSchema: ObjectSchema( properties: { 'duration': Schema.integer(description: 'Analysis duration in seconds'), 'metrics': Schema.array( description: 'Performance metrics to collect', items: Schema.string(enum: ['frameRate', 'memory', 'cpu', 'battery', 'networkUsage']), ), }, ), ); ``` ## 8. Tool Template System ### Current Limitation Creating new tools requires significant boilerplate code. ### Suggested Enhancement Provide tool templates for common debugging patterns: ```dart // Tool template system static final createToolFromTemplate = Tool( name: 'createToolFromTemplate', description: 'Create a new debugging tool from a template', inputSchema: ObjectSchema( required: ['templateType'], properties: { 'templateType': Schema.string( enum: ['state_inspector', 'ui_modifier', 'performance_probe', 'custom_assertion'], ), 'parameters': Schema.object(description: 'Template-specific parameters'), }, ), ); ``` ## Implementation Priority ### High Priority (Immediate Impact) 1. Enhanced tool discovery metadata 2. Tool chain execution 3. Enhanced error context ### Medium Priority (Workflow Improvement) 4. Intelligent tool suggestions 5. Performance monitoring integration 6. Tool template system ### Lower Priority (Advanced Features) 7. Real-time state monitoring 8. Code generation and hot injection ## Review Questions 1. **Scope**: Are these enhancements aligned with your vision for AI agent workflows? 2. **Implementation**: Which enhancements would provide the most immediate value for AI agents? 3. **Safety**: Are there additional safety considerations for features like code injection? 4. **Integration**: How should these enhancements integrate with existing Flutter development tools? 5. **Documentation**: What additional documentation or examples would help AI agents use these features effectively?

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arenukvern/mcp_flutter'

If you have feedback or need assistance with the MCP directory API, please join our Discord server