enhancement_suggestions.md•8.72 kB
# Dynamic Registry Enhancement Suggestions for AI Agents
## Current State Analysis
The dynamic registry feature provides excellent foundations for AI agent workflows but could be enhanced in several key areas:
## 1. Enhanced Tool Discovery and Metadata
### Current Limitation
`listClientToolsAndResources` provides basic tool definitions but lacks runtime context.
### Suggested Enhancement
Add metadata about tool state, usage frequency, and categorization:
```dart
// Enhanced tool registration with metadata
final debugToolEntry = MCPCallEntry.tool(
handler: debugHandler,
definition: MCPToolDefinition(
name: 'inspect_widget_state',
description: 'Inspect current widget state',
inputSchema: {...},
metadata: {
'category': 'debugging',
'priority': 'high',
'usageHint': 'Use when UI behaves unexpectedly',
'estimatedExecutionTime': 'fast',
'sideEffects': false,
},
),
);
```
### Implementation
Extend `MCPToolDefinition` and `DynamicRegistryTools._handleListClientToolsAndResources` to include:
- Tool categories (debugging, state, ui, performance)
- Execution time estimates
- Side effect indicators
- Usage recommendations
- Last execution timestamp
## 2. Intelligent Tool Suggestion System
### Current Limitation
AI agents must manually discover which tools are relevant for specific scenarios.
### Suggested Enhancement
Add contextual tool recommendations based on app state:
```dart
// New tool for intelligent suggestions
static final suggestRelevantTools = Tool(
name: 'suggestRelevantTools',
description: 'Get tool suggestions based on current app state and context',
inputSchema: ObjectSchema(
properties: {
'context': Schema.string(description: 'Current debugging context (error, performance, ui)'),
'appState': Schema.object(description: 'Current app state snapshot'),
},
),
);
```
### Implementation
- Analyze current Flutter app state (errors, performance metrics, UI tree)
- Return prioritized list of relevant tools
- Include reasoning for each suggestion
## 3. Tool Chain Execution
### Current Limitation
AI agents must execute tools sequentially, making debugging workflows verbose.
### Suggested Enhancement
Enable chained tool execution with dependency management:
```dart
// New tool for executing tool chains
static final executeToolChain = Tool(
name: 'executeToolChain',
description: 'Execute a sequence of tools with result passing',
inputSchema: ObjectSchema(
required: ['toolChain'],
properties: {
'toolChain': Schema.array(
description: 'Array of tools to execute in sequence',
items: Schema.object(
properties: {
'toolName': Schema.string(description: 'Tool to execute'),
'arguments': Schema.object(description: 'Tool arguments'),
'resultMapping': Schema.object(description: 'How to pass results to next tool'),
},
),
),
},
),
);
```
### Example Usage
```json
{
"name": "executeToolChain",
"arguments": {
"toolChain": [
{ "toolName": "get_widget_info", "arguments": { "widgetId": "button1" } },
{
"toolName": "modify_widget_state",
"arguments": { "widgetId": "button1", "enabled": false }
},
{ "toolName": "take_screenshot", "arguments": {} },
{ "toolName": "hot_reload_flutter", "arguments": {} }
]
}
}
```
## 4. Real-time State Monitoring
### Current Limitation
AI agents get point-in-time snapshots but lack continuous monitoring.
### Suggested Enhancement
Add subscription-based monitoring for continuous state updates:
```dart
// New resource for real-time monitoring
static final subscribeToStateChanges = Tool(
name: 'subscribeToStateChanges',
description: 'Subscribe to real-time app state changes',
inputSchema: ObjectSchema(
properties: {
'monitors': Schema.array(
description: 'Types of changes to monitor',
items: Schema.string(enum: ['errors', 'ui_changes', 'navigation', 'performance']),
),
'duration': Schema.integer(description: 'Monitoring duration in seconds'),
},
),
);
```
### Implementation
- Use Flutter's dev tools protocol for real-time updates
- Stream changes to AI agents via MCP notifications
- Enable proactive debugging based on detected issues
## 5. Code Generation and Hot Injection
### Current Limitation
AI agents can only work with pre-registered tools, limiting experimentation.
### Suggested Enhancement
Enable dynamic Dart code generation and injection:
```dart
// New tool for runtime code injection
static final injectDartCode = Tool(
name: 'injectDartCode',
description: 'Inject and execute Dart code at runtime for experimentation',
inputSchema: ObjectSchema(
required: ['dartCode'],
properties: {
'dartCode': Schema.string(description: 'Dart code to inject and execute'),
'context': Schema.string(description: 'Execution context (widget, service, global)'),
'temporary': Schema.bool(description: 'Whether changes are temporary or persistent'),
},
),
);
```
### Safety Considerations
- Sandbox execution environment
- Code validation before injection
- Automatic rollback on errors
- Clear temporary vs persistent change distinction
## 6. Enhanced Error Context
### Current Limitation
Error reporting lacks sufficient context for AI agents to provide meaningful assistance.
### Suggested Enhancement
Enrich error reporting with actionable context:
```dart
// Enhanced error resource
extension type EnhancedErrorResource._(MCPCallEntry entry) implements MCPCallEntry {
factory EnhancedErrorResource() {
return EnhancedErrorResource._(MCPCallEntry.resource(
handler: (request) => MCPCallResult(
message: 'Enhanced error information with context',
parameters: {
'errors': errors.map((e) => {
'message': e.message,
'stackTrace': e.stackTrace,
'widgetContext': e.widgetContext,
'suggestedFixes': e.suggestedFixes,
'relatedCode': e.relatedCodeSnippets,
'debuggingSteps': e.recommendedDebuggingSteps,
}).toList(),
},
),
definition: MCPResourceDefinition(
name: 'enhanced_errors',
description: 'Detailed error information with actionable context',
),
));
}
}
```
## 7. Performance Monitoring Integration
### Current Limitation
No performance monitoring tools for AI agents to detect and debug performance issues.
### Suggested Enhancement
Add comprehensive performance monitoring:
```dart
// Performance monitoring tools
static final analyzePerformance = Tool(
name: 'analyzePerformance',
description: 'Analyze app performance and identify bottlenecks',
inputSchema: ObjectSchema(
properties: {
'duration': Schema.integer(description: 'Analysis duration in seconds'),
'metrics': Schema.array(
description: 'Performance metrics to collect',
items: Schema.string(enum: ['frameRate', 'memory', 'cpu', 'battery', 'networkUsage']),
),
},
),
);
```
## 8. Tool Template System
### Current Limitation
Creating new tools requires significant boilerplate code.
### Suggested Enhancement
Provide tool templates for common debugging patterns:
```dart
// Tool template system
static final createToolFromTemplate = Tool(
name: 'createToolFromTemplate',
description: 'Create a new debugging tool from a template',
inputSchema: ObjectSchema(
required: ['templateType'],
properties: {
'templateType': Schema.string(
enum: ['state_inspector', 'ui_modifier', 'performance_probe', 'custom_assertion'],
),
'parameters': Schema.object(description: 'Template-specific parameters'),
},
),
);
```
## Implementation Priority
### High Priority (Immediate Impact)
1. Enhanced tool discovery metadata
2. Tool chain execution
3. Enhanced error context
### Medium Priority (Workflow Improvement)
4. Intelligent tool suggestions
5. Performance monitoring integration
6. Tool template system
### Lower Priority (Advanced Features)
7. Real-time state monitoring
8. Code generation and hot injection
## Review Questions
1. **Scope**: Are these enhancements aligned with your vision for AI agent workflows?
2. **Implementation**: Which enhancements would provide the most immediate value for AI agents?
3. **Safety**: Are there additional safety considerations for features like code injection?
4. **Integration**: How should these enhancements integrate with existing Flutter development tools?
5. **Documentation**: What additional documentation or examples would help AI agents use these features effectively?