Skip to main content
Glama

MCP-RAG

by AnuragB7
test_ocr_extraction.py1.03 kB
import asyncio from document_processors import ContentExtractor async def test_ocr_extraction(): """Test OCR extraction capabilities""" file_path = "/Users/A200309906/Documents/large-file-rag-mcp/DTSE Documents/00179-000003-06-A_20180425_Agreement+Sideletter_sign.pdf" print("=== Enhanced PDF Extraction Test ===") # Test enhanced extraction try: content = await ContentExtractor.extract_pdf_content_enhanced(file_path) print(f"\nExtracted content length: {len(content)} characters") if content and len(content) > 100: print("SUCCESS! Content extracted:") print("-" * 50) print(content[:500] + "..." if len(content) > 500 else content) print("-" * 50) else: print("FAILED: No substantial content extracted") print(f"Content: {content[:200]}") except Exception as e: print(f"ERROR: {e}") if __name__ == "__main__": asyncio.run(test_ocr_extraction())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AnuragB7/MCP-RAG'

If you have feedback or need assistance with the MCP directory API, please join our Discord server