README.md•4.02 kB
# 📚 MCP-RAG
MCP-RAG system built with the Model Context Protocol (MCP) that handles large files (up to 200MB) using intelligent chunking strategies, multi-format document support, and enterprise-grade reliability.
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
[](https://github.com/modelcontextprotocol)
## 🌟 Features
### 📄 **Multi-Format Document Support**
- **PDF**: Intelligent page-by-page processing with table detection
- **DOCX**: Paragraph and table extraction with formatting preservation
- **Excel**: Sheet-aware processing with column context (.xlsx/.xls)
- **CSV**: Smart row batching with header preservation
- **PPTX**: Support for PPTX
- **IMAGE**: Suppport for jpeg , png , webp , gif etc and OCR
### 🚀 **Large File Processing**
- **Adaptive chunking**: Different strategies based on file size
- **Memory management**: Streaming processing for 50MB+ files
- **Progress tracking**: Real-time progress indicators
- **Timeout handling**: Graceful handling of long-running operations
### 🧠 **Advanced RAG Capabilities**
- **Semantic search**: Vector similarity with confidence scores
- **Cross-document queries**: Search across multiple documents simultaneously
- **Source attribution**: Citations with similarity scores
- **Hybrid retrieval**: Combine semantic and keyword search
### 🔌 **Model Context Protocol (MCP) Integration**
- **Universal tool interface**: Standardized AI-to-tool communication
- **Auto-discovery**: LangChain agents automatically find and use tools
- **Secure communication**: Built-in permission controls
- **Extensible architecture**: Easy to add new document processors
### 🏢 **Enterprise Ready**
- **Custom LLM endpoints**: Support for any OpenAI-compatible API
- **Vector database options**: ChromaDB (local) + Milvus (production)
- **Batch processing**: Handles API rate limits and batch size constraints
- **Error recovery**: Retry logic and graceful degradation
## 🏗️ Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Streamlit │ │ LangChain │ │ MCP Server │
│ Frontend │◄──►│ Agent │◄──►│ (Tools) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
┌────────────────────────┼────────────────────────┐
│ ▼ │
┌───────▼────────┐ ┌─────────────────┐ ┌──────▼──────┐
│ Document │ │ Vector Database │ │ LLM API │
│ Processors │ │ (ChromaDB) │ │ Endpoint │
└────────────────┘ └─────────────────┘ └─────────────┘
## 🚀 Quick Start
### Prerequisites
- Python 3.11+
- OpenAI API key or compatible LLM endpoint
- 8GB+ RAM (for large file processing)
### Installation
**Clone the repository**
```bash
git clone https://github.com/yourusername/rag-large-file-processor.git
cd rag-large-file-processor
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# Create .env file
cat > .env << EOF
OPENAI_API_KEY=your_openai_api_key_here
BASE_URL=https://api.openai.com/v1
MODEL_NAME=gpt-4o
VECTOR_DB_TYPE=chromadb
streamlit run streamlit_app.py