Skip to main content
Glama

AINative ZeroDB MCP Server

zerodb_store_vector

Store vector embeddings with metadata for AI memory and semantic search. Accepts 1536-dimensional vectors with document content and metadata for persistent storage and retrieval.

Instructions

Store vector embedding with metadata (must be exactly 1536 dimensions)

Input Schema

NameRequiredDescriptionDefault
documentYesSource document
metadataNoDocument metadata
namespaceNoVector namespacewindsurf
vector_embeddingYesVector embedding (exactly 1536 dimensions required)

Input Schema (JSON Schema)

{ "properties": { "document": { "description": "Source document", "type": "string" }, "metadata": { "description": "Document metadata", "type": "object" }, "namespace": { "default": "windsurf", "description": "Vector namespace", "type": "string" }, "vector_embedding": { "description": "Vector embedding (exactly 1536 dimensions required)", "items": { "type": "number" }, "maxItems": 1536, "minItems": 1536, "type": "array" } }, "required": [ "vector_embedding", "document" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AINative-Studio/ainative-zerodb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server