Skip to main content
Glama

AINative ZeroDB MCP Server

zerodb_search_vectors

Find semantically similar vectors using cosine similarity to retrieve relevant data from vector databases. Supports namespace filtering and similarity thresholds for precise search results.

Instructions

Search vectors using semantic similarity

Input Schema

NameRequiredDescriptionDefault
limitNoMax results
namespaceNoVector namespace
query_vectorYesQuery vector (exactly 1536 dimensions required)
thresholdNoSimilarity threshold

Input Schema (JSON Schema)

{ "properties": { "limit": { "default": 10, "description": "Max results", "type": "number" }, "namespace": { "description": "Vector namespace", "type": "string" }, "query_vector": { "description": "Query vector (exactly 1536 dimensions required)", "items": { "type": "number" }, "maxItems": 1536, "minItems": 1536, "type": "array" }, "threshold": { "default": 0.7, "description": "Similarity threshold", "type": "number" } }, "required": [ "query_vector" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AINative-Studio/ainative-zerodb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server