Skip to main content
Glama

Computer Control MCP

by AB498
rapidocr_test.py738 B
import cv2 from rapidocr import RapidOCR from rapidocr_onnxruntime import VisRes image_path = r"C:\Users\Admin\AppData\Local\Temp\tmpdw2d8r14\screenshot_20250815_033153_f99a8396.png" img = cv2.imread(image_path) if img is None: print(f"Failed to load img: {image_path}") else: print(f"Loaded img: {image_path}, shape: {img.shape}") engine = RapidOCR() vis = VisRes() output = engine(img) # Separate into boxes, texts, and scores boxes = output.boxes txts = output.txts scores = output.scores zipped_results = list(zip(boxes, txts, scores)) print(f"Found {len(zipped_results)} text items in OCR result.") print(f"First 10 items: {str(zipped_results).encode("utf-8", errors="ignore")}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/AB498/computer-control-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server