Skip to main content
Glama
24mlight

A-Share MCP Server

get_required_reserve_ratio_data

Retrieve required reserve ratio data for analyzing China's monetary policy and banking system liquidity, with customizable date ranges and output formats.

Instructions

Required reserve ratio data.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
start_dateNo
end_dateNo
year_typeNo0
limitNo
formatNomarkdown

Implementation Reference

  • MCP tool handler function implementing the tool logic, decorated with @app.tool() for registration, wraps use case execution with standardized error handling.
    @app.tool() def get_required_reserve_ratio_data(start_date: Optional[str] = None, end_date: Optional[str] = None, year_type: str = '0', limit: int = 250, format: str = "markdown") -> str: """Required reserve ratio data.""" return run_tool_with_handling( lambda: fetch_required_reserve_ratio_data( active_data_source, start_date=start_date, end_date=end_date, year_type=year_type, limit=limit, format=format ), context="get_required_reserve_ratio_data", )
  • Use case orchestrator that validates inputs, fetches raw data from FinancialDataSource, and formats the output as markdown table.
    def fetch_required_reserve_ratio_data(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], year_type: str, limit: int, format: str) -> str: validate_output_format(format) validate_year_type_reserve(year_type) df = data_source.get_required_reserve_ratio_data(start_date=start_date, end_date=end_date, year_type=year_type) meta = {"dataset": "required_reserve_ratio", "start_date": start_date, "end_date": end_date, "year_type": year_type} return format_table_output(df, format=format, max_rows=limit, meta=meta)
  • Interface definition (schema) for the data source method, specifying expected parameters and return type (pd.DataFrame).
    @abstractmethod def get_required_reserve_ratio_data(self, start_date: Optional[str] = None, end_date: Optional[str] = None, year_type: str = '0') -> pd.DataFrame: """Fetches required reserve ratio data.""" pass
  • Baostock-specific implementation of the data source method, delegating to shared _fetch_macro_data helper which calls baostock.query_required_reserve_ratio_data.
    def get_required_reserve_ratio_data(self, start_date: Optional[str] = None, end_date: Optional[str] = None, year_type: str = '0') -> pd.DataFrame: """Fetches required reserve ratio data using Baostock.""" # Note the extra yearType parameter handled by kwargs return _fetch_macro_data(bs.query_required_reserve_ratio_data, "Required Reserve Ratio", start_date, end_date, yearType=year_type)
  • Registration function that defines and registers all macroeconomic tools including get_required_reserve_ratio_data using FastMCP @app.tool() decorators.
    def register_macroeconomic_tools(app: FastMCP, active_data_source: FinancialDataSource): """Register macroeconomic tools.""" @app.tool() def get_deposit_rate_data(start_date: Optional[str] = None, end_date: Optional[str] = None, limit: int = 250, format: str = "markdown") -> str: """Benchmark deposit rates.""" return run_tool_with_handling( lambda: fetch_deposit_rate_data(active_data_source, start_date=start_date, end_date=end_date, limit=limit, format=format), context="get_deposit_rate_data", ) @app.tool() def get_loan_rate_data(start_date: Optional[str] = None, end_date: Optional[str] = None, limit: int = 250, format: str = "markdown") -> str: """Benchmark loan rates.""" return run_tool_with_handling( lambda: fetch_loan_rate_data(active_data_source, start_date=start_date, end_date=end_date, limit=limit, format=format), context="get_loan_rate_data", ) @app.tool() def get_required_reserve_ratio_data(start_date: Optional[str] = None, end_date: Optional[str] = None, year_type: str = '0', limit: int = 250, format: str = "markdown") -> str: """Required reserve ratio data.""" return run_tool_with_handling( lambda: fetch_required_reserve_ratio_data( active_data_source, start_date=start_date, end_date=end_date, year_type=year_type, limit=limit, format=format ), context="get_required_reserve_ratio_data", ) @app.tool() def get_money_supply_data_month(start_date: Optional[str] = None, end_date: Optional[str] = None, limit: int = 250, format: str = "markdown") -> str: """Monthly money supply data.""" return run_tool_with_handling( lambda: fetch_money_supply_data_month( active_data_source, start_date=start_date, end_date=end_date, limit=limit, format=format ), context="get_money_supply_data_month", ) @app.tool() def get_money_supply_data_year(start_date: Optional[str] = None, end_date: Optional[str] = None, limit: int = 250, format: str = "markdown") -> str: """Yearly money supply data.""" return run_tool_with_handling( lambda: fetch_money_supply_data_year( active_data_source, start_date=start_date, end_date=end_date, limit=limit, format=format ), context="get_money_supply_data_year", )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/24mlight/a-share-mcp-is-just-i-need'

If you have feedback or need assistance with the MCP directory API, please join our Discord server