Skip to main content
Glama
24mlight

A-Share MCP Server

get_deposit_rate_data

Retrieve benchmark deposit rate data for China's A-share market analysis, supporting date ranges and multiple output formats.

Instructions

Benchmark deposit rates.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
start_dateNo
end_dateNo
limitNo
formatNomarkdown

Implementation Reference

  • The main handler function for the 'get_deposit_rate_data' tool, decorated with @app.tool(), which handles execution by delegating to the use case via run_tool_with_handling.
    @app.tool() def get_deposit_rate_data(start_date: Optional[str] = None, end_date: Optional[str] = None, limit: int = 250, format: str = "markdown") -> str: """Benchmark deposit rates.""" return run_tool_with_handling( lambda: fetch_deposit_rate_data(active_data_source, start_date=start_date, end_date=end_date, limit=limit, format=format), context="get_deposit_rate_data", )
  • Abstract method definition in FinancialDataSource interface, specifying the expected signature for concrete data source implementations of get_deposit_rate_data.
    @abstractmethod def get_deposit_rate_data(self, start_date: Optional[str] = None, end_date: Optional[str] = None) -> pd.DataFrame: """Fetches benchmark deposit rates.""" pass
  • mcp_server.py:55-55 (registration)
    Invocation of register_macroeconomic_tools during server startup, which defines and registers the get_deposit_rate_data tool among others.
    register_macroeconomic_tools(app, active_data_source)
  • Use case function called by the tool handler; fetches raw data from data source, validates output format, adds metadata, and formats as table.
    def fetch_deposit_rate_data(data_source: FinancialDataSource, *, start_date: Optional[str], end_date: Optional[str], limit: int, format: str) -> str: validate_output_format(format) df = data_source.get_deposit_rate_data(start_date=start_date, end_date=end_date) meta = {"dataset": "deposit_rate", "start_date": start_date, "end_date": end_date} return format_table_output(df, format=format, max_rows=limit, meta=meta)
  • Concrete implementation in BaostockDataSource that delegates to shared _fetch_macro_data helper for querying the Baostock deposit rate API.
    def get_deposit_rate_data(self, start_date: Optional[str] = None, end_date: Optional[str] = None) -> pd.DataFrame: """Fetches benchmark deposit rates using Baostock.""" return _fetch_macro_data(bs.query_deposit_rate_data, "Deposit Rate", start_date, end_date)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/24mlight/a-share-mcp-is-just-i-need'

If you have feedback or need assistance with the MCP directory API, please join our Discord server