Skip to main content
Glama
00200200

Cocktails RAG MCP Server

by 00200200

Cocktails RAG MCP Server

MCP tool for cocktail recommendations using RAG (Retrieval-Augmented Generation).

Requirements

  • Python 3.11+

  • uv package manager - https://docs.astral.sh/uv/getting-started/installation/

Quick Start

  1. Get Groq API key (free): https://console.groq.com/keys

  2. Setup:

    # Clone the repository git clone https://github.com/00200200/cocktails-rag-mcp.git cd cocktails-rag-mcp # Copy environment template cp .env.example .env # Edit .env and add your GROQ_API_KEY nano .env # Install dependencies uv sync
  3. Pre-download models (required):

    Download embeddings and reranker models:

    uv run python -c "from src.rag.rag import RAG; RAG(); print('Models downloaed!')"
  4. Install for Claude Desktop:

    uv run fastmcp install claude-desktop fastmcp.json --name cocktails --env-file .env

    Manual

    Edit config file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

    • Windows: %APPDATA%\Claude\claude_desktop_config.json

    { "mcpServers": { "cocktails": { "command": "uv", "args": [ "run", "--with","faiss-cpu", "--with","fastmcp", "--with","jq", "--with","langchain", "--with","langchain-community", "--with","langchain-groq", "--with","langchain-huggingface", "--with","pandas", "--with","python-dotenv", "--with","sentence-transformers", "fastmcp", "run", "/ABSOLUTE/PATH/TO/src/mcp/server.py:mcp" ], "env": { "GROQ_API_KEY": "your_groq_api_key_here" } } } }

    Replace /ABSOLUTE/PATH/TO/ with your project path and GROQ_API_KEY with your API key.

Example Usage

Local Testing

# Test RAG pipeline directly uv run python -m src.rag.rag # Test MCP server locally uv run python src/mcp/server.py

Development

Code Formatting

# Format code with black uv tool run black . # Sort imports with isort uv tool run isort .

Project Structure

RAG/ ├── src/ │ ├── mcp/ # MCP server implementation (FastMCP) │ ├── rag/ # RAG pipeline (retrieve, rerank, generate) │ ├── db/ # FAISS vector database handler │ └── data/ # Data loading utilities ├── data/ # Cocktail dataset ├── faiss_index/ # Generated FAISS index (auto-created on first run) ├── notebooks/ # EDA notebook ├── fastmcp.json # FastMCP configuration ├── pyproject.toml # Project dependencies └── .env.example # Environment template

Tech Stack

  • MCP Framework: FastMCP

  • RAG Framework: LangChain

  • Embeddings: BAAI/bge-m3 (local via HuggingFace)

  • Vector DB: FAISS (local)

  • Reranker: BAAI/bge-reranker-v2-m3 (local via HuggingFace)

  • LLM: Groq API (llama-3.1-8b-instant)

  • Package Manager: uv

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/00200200/cocktails-rag-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server