Tinybird MCP server
An MCP server to interact with a Tinybird Workspace from any MCP client.
Prompts
Interactive templates invoked by user choice
Name | Description |
---|---|
datasource-definition | Builds a .datasource file from sample NDJSON data |
tinybird-default | A prompt to get insights from the Data Sources and Pipe Endpoints in the Tinybird Workspace |
Resources
Contextual data attached and managed by the client
Name | Description |
---|---|
Insights from Tinybird | A living document of discovered insights |
Context for datasource definition | Syntax and context to build .datasource datafiles |
Tools
Functions exposed to the LLM to take actions
Name | Description |
---|---|
list-data-sources | List all Data Sources in the Tinybird Workspace |
get-data-source | Get details of a Data Source in the Tinybird Workspace, such as the schema |
list-pipes | List all Pipe Endpoints in the Tinybird Workspace |
get-pipe | Get details of a Pipe Endpoint in the Tinybird Workspace, such as the nodes SQLs to understand what they do or what Data Sources they use |
request-pipe-data | Requests data from a Pipe Endpoint in the Tinybird Workspace, includes parameters |
run-select-query | Runs a select query to the Tinybird Workspace. It may query Data Sources or Pipe Endpoints |
append-insight | Add a business insight to the memo |
llms-tinybird-docs | The Tinybird product description and documentation, including API Reference in LLM friendly format |
analyze-pipe | Analyze the Pipe Endpoint SQL |
push-datafile | Push a .datasource or .pipe file to the Workspace |
save-event | Sends an event to a Data Source in Tinybird. The data needs to be in NDJSON format and conform to the Data Source schema in Tinybird |
Server Configuration
Describes the environment variables required to run the server.
Name | Required | Description | Default |
---|---|---|---|
TB_API_URL | Yes | Your Tinybird API URL | |
TB_ADMIN_TOKEN | Yes | Your Tinybird Admin Token |
Tinybird MCP server
An MCP server to interact with a Tinybird Workspace from any MCP client.
<a href="https://glama.ai/mcp/servers/53l5ojnx30"><img width="380" height="200" src="https://glama.ai/mcp/servers/53l5ojnx30/badge" alt="Tinybird server MCP server" /></a>
Features
- Query Tinybird Data Sources using the Tinybird Query API
- Get the result of existing Tinybird API Endpoints with HTTP requests
- Push Datafiles
Usage examples
Setup
Installation
Using MCP package managers
Smithery
To install Tinybird MCP for Claude Desktop automatically via Smithery:
mcp-get
You can install the Tinybird MCP server using mcp-get:
Prerequisites
MCP is still very new and evolving, we recommend following the MCP documentation to get the MCP basics up and running.
You'll need:
Configuration
1. Configure Claude Desktop
Create the following file depending on your OS:
On MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Paste this template in the file and replace <TINYBIRD_API_URL>
and <TINYBIRD_ADMIN_TOKEN>
with your Tinybird API URL and Admin Token:
2. Restart Claude Desktop
Prompts
The server provides a single prompt:
- tinybird-default: Assumes you have loaded some data in Tinybird and want help exploring it.
- Requires a "topic" argument which defines the topic of the data you want to explore, for example, "Bluesky data" or "retail sales".
You can configure additional prompt workflows:
- Create a prompts Data Source in your workspace with this schema and append your prompts. The MCP loads
prompts
on initialization so you can configure it to your needs:
Tools
The server implements several tools to interact with the Tinybird Workspace:
list-data-sources
: Lists all Data Sources in the Tinybird Workspacelist-pipes
: Lists all Pipe Endpoints in the Tinybird Workspaceget-data-source
: Gets the information of a Data Source given its name, including the schema.get-pipe
: Gets the information of a Pipe Endpoint given its name, including its nodes and SQL transformation to understand what insights it provides.request-pipe-data
: Requests data from a Pipe Endpoints via an HTTP request. Pipe endpoints can have parameters to filter the analytical data.run-select-query
: Allows to run a select query over a Data Source to extract insights.append-insight
: Adds a new business insight to the memo resourcellms-tinybird-docs
: Contains the whole Tinybird product documentation, so you can use it to get context about what Tinybird is, what it does, API reference and more.save-event
: This allows to send an event to a Tinybird Data Source. Use it to save a user generated prompt to the prompts Data Source. The MCP server feeds from the prompts Data Source on initialization so the user can instruct the LLM the workflow to follow.analyze-pipe
: Uses the Tinybird analyze API to run a ClickHouse explain on the Pipe Endpoint query and check if indexes, sorting key, and partition key are being used and propose optimizations suggestionspush-datafile
: Creates a remote Data Source or Pipe in the Tinybird Workspace from a local datafile. Use the Filesystem MCP to save files generated by this MCP server.
Development
Config
If you are working locally add two environment variables to a .env
file in the root of the repository:
For local development, update your Claude Desktop configuration:
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
- Build package distributions:
This will create source and wheel distributions in the dist/
directory.
- Publish to PyPI:
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--token
orUV_PUBLISH_TOKEN
- Or username/password:
--username
/UV_PUBLISH_USERNAME
and--password
/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
Monitoring
To monitor the MCP server, you can use any compatible Prometheus client such as Grafana. Learn how to monitor your MCP server here.
GitHub Badge
Glama performs regular codebase and documentation scans to:
- Confirm that the MCP server is working as expected.
- Confirm that there are no obvious security issues with dependencies of the server.
- Extract server characteristics such as tools, resources, prompts, and required parameters.
Our directory badge helps users to quickly asses that the MCP server is safe, server capabilities, and instructions for installing the server.
Copy the following code to your README.md file: