mcp-server-llmling

by phil65
Verified

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

mcp-server-llmling

Read the documentation!

LLMling Server Manual

Overview

mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.

LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources
  • Structured prompts for consistent interaction
  • Tools for extending capabilities

Key Features

1. Resource Management

  • Load and manage different types of resources:
    • Text files (PathResource)
    • Raw text content (TextResource)
    • CLI command output (CLIResource)
    • Python source code (SourceResource)
    • Python callable results (CallableResource)
    • Images (ImageResource)
  • Support for resource watching/hot-reload
  • Resource processing pipelines
  • URI-based resource access

2. Tool System

  • Register and execute Python functions as LLM tools
  • Support for OpenAPI-based tools
  • Entry point-based tool discovery
  • Tool validation and parameter checking
  • Structured tool responses

3. Prompt Management

  • Static prompts with template support
  • Dynamic prompts from Python functions
  • File-based prompts
  • Prompt argument validation
  • Completion suggestions for prompt arguments

4. Multiple Transport Options

  • Stdio-based communication (default)
  • Server-Sent Events (SSE) for web clients
  • Support for custom transport implementations

Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{ "context_servers": { "llmling": { "command": { "env": {}, "label": "llmling", "path": "uvx", "args": [ "mcp-server-llmling", "start", "path/to/your/config.yml" ] }, "settings": {} } } }

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{ "mcpServers": { "llmling": { "command": "uvx", "args": [ "mcp-server-llmling", "start", "path/to/your/config.yml" ], "env": {} } } }

Manual Server Start

Start the server directly from command line:

# Latest version uvx mcp-server-llmling@latest

1. Programmatic usage

from llmling import RuntimeConfig from mcp_server_llmling import LLMLingServer async def main() -> None: async with RuntimeConfig.open(config) as runtime: server = LLMLingServer(runtime, enable_injection=True) await server.start() asyncio.run(main())

2. Using Custom Transport

from llmling import RuntimeConfig from mcp_server_llmling import LLMLingServer async def main() -> None: async with RuntimeConfig.open(config) as runtime: server = LLMLingServer( config, transport="sse", transport_options={ "host": "localhost", "port": 8000, "cors_origins": ["http://localhost:3000"] } ) await server.start() asyncio.run(main())

3. Resource Configuration

resources: python_code: type: path path: "./src/**/*.py" watch: enabled: true patterns: - "*.py" - "!**/__pycache__/**" api_docs: type: text content: | API Documentation ================ ...

4. Tool Configuration

tools: analyze_code: import_path: "mymodule.tools.analyze_code" description: "Analyze Python code structure" toolsets: api: type: openapi spec: "https://api.example.com/openapi.json" namespace: "api"

Server Configuration

The server is configured through a YAML file with the following sections:

global_settings: timeout: 30 max_retries: 3 log_level: "INFO" requirements: [] pip_index_url: null extra_paths: [] resources: # Resource definitions... tools: # Tool definitions... toolsets: # Toolset definitions... prompts: # Prompt definitions...

MCP Protocol

The server implements the MCP protocol which supports:

  1. Resource Operations
    • List available resources
    • Read resource content
    • Watch for resource changes
  2. Tool Operations
    • List available tools
    • Execute tools with parameters
    • Get tool schemas
  3. Prompt Operations
    • List available prompts
    • Get formatted prompts
    • Get completions for prompt arguments
  4. Notifications
    • Resource changes
    • Tool/prompt list updates
    • Progress updates
    • Log messages
-
security - not tested
A
license - permissive license
-
quality - not tested

A server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications, allowing users to define resources, tools, and prompts without writing code.

  1. LLMling Server Manual
    1. Overview
      1. Key Features
        1. 1. Resource Management
          1. 2. Tool System
            1. 3. Prompt Management
              1. 4. Multiple Transport Options
              2. Usage
                1. With Zed Editor
                  1. With Claude Desktop
                    1. Manual Server Start
                      1. 1. Programmatic usage
                        1. 2. Using Custom Transport
                          1. 3. Resource Configuration
                            1. 4. Tool Configuration
                            2. Server Configuration
                              1. MCP Protocol