Qwen Max MCP Server

# Qwen Max MCP Server A Model Context Protocol (MCP) server implementation for the Qwen Max language model. [![smithery badge](https://smithery.ai/badge/@66julienmartin/mcp-server-qwen_max)](https://smithery.ai/server/@66julienmartin/mcp-server-qwen_max) <a href="https://glama.ai/mcp/servers/1v7po9oa9w"><img width="380" height="200" src="https://glama.ai/mcp/servers/1v7po9oa9w/badge" alt="Qwen Max Server MCP server" /></a> Why Node.js? This implementation uses Node.js/TypeScript as it currently provides the most stable and reliable integration with MCP servers compared to other languages like Python. The Node.js SDK for MCP offers better type safety, error handling, and compatibility with Claude Desktop. ## Prerequisites - Node.js (v18 or higher) - npm - Claude Desktop - Dashscope API key ## Installation ### Installing via Smithery To install Qwen Max MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@66julienmartin/mcp-server-qwen_max): ```bash npx -y @smithery/cli install @66julienmartin/mcp-server-qwen_max --client claude ``` ### Manual Installation ```bash git clone https://github.com/66julienmartin/mcp-server-qwen-max.git cd Qwen_Max npm install ``` ## Model Selection By default, this server uses the Qwen-Max model. The Qwen series offers several commercial models with different capabilities: ### Qwen-Max Provides the best inference performance, especially for complex and multi-step tasks. Context window: 32,768 tokens - Max input: 30,720 tokens - Max output: 8,192 tokens - Pricing: $0.0016/1K tokens (input), $0.0064/1K tokens (output) - Free quota: 1 million tokens Available versions: - qwen-max (Stable) - qwen-max-latest (Latest) - qwen-max-2025-01-25 (Snapshot, also known as qwen-max-0125 or Qwen2.5-Max) ### Qwen-Plus Balanced combination of performance, speed, and cost, ideal for moderately complex tasks. Context window: 131,072 tokens - Max input: 129,024 tokens - Max output: 8,192 tokens - Pricing: $0.0004/1K tokens (input), $0.0012/1K tokens (output) - Free quota: 1 million tokens Available versions: - qwen-plus (Stable) - qwen-plus-latest (Latest) - qwen-plus-2025-01-25 (Snapshot, also known as qwen-plus-0125) ### Qwen-Turbo Fast speed and low cost, suitable for simple tasks. - Context window: 1,000,000 tokens - Max input: 1,000,000 tokens - Max output: 8,192 tokens - Pricing: $0.00005/1K tokens (input), $0.0002/1K tokens (output) - Free quota: 1 million tokens Available versions: - qwen-turbo (Stable) - qwen-turbo-latest (Latest) - qwen-turbo-2024-11-01 (Snapshot, also known as qwen-turbo-1101) To modify the model, update the model name in src/index.ts: ```typescript // For Qwen-Max (default) model: "qwen-max" // For Qwen-Plus model: "qwen-plus" // For Qwen-Turbo model: "qwen-turbo" ``` For more detailed information about available models, visit the Alibaba Cloud Model Documentation https://www.alibabacloud.com/help/en/model-studio/getting-started/models?spm=a3c0i.23458820.2359477120.1.446c7d3f9LT0FY. ## Project Structure ``` qwen-max-mcp/ ├── src/ │ ├── index.ts # Main server implementation ├── build/ # Compiled files │ ├── index.js ├── LICENSE ├── README.md ├── package.json ├── package-lock.json └── tsconfig.json ``` ## Configuration 1. Create a `.env` file in the project root: ``` DASHSCOPE_API_KEY=your-api-key-here ``` 2. Update Claude Desktop configuration: ```json { "mcpServers": { "qwen_max": { "command": "node", "args": ["/path/to/Qwen_Max/build/index.js"], "env": { "DASHSCOPE_API_KEY": "your-api-key-here" } } } } ``` ## Development ```bash npm run dev # Watch mode npm run build # Build npm run start # Start server ``` ## Features - Text generation with Qwen models - Configurable parameters (max_tokens, temperature) - Error handling - MCP protocol support - Claude Desktop integration - Support for all Qwen commercial models (Max, Plus, Turbo) - Extensive token context windows ## API Usage ```typescript // Example tool call { "name": "qwen_max", "arguments": { "prompt": "Your prompt here", "max_tokens": 8192, "temperature": 0.7 } } ``` ## The Temperature Parameter The temperature parameter controls the randomness of the model's output: Lower values (0.0-0.7): More focused and deterministic outputs Higher values (0.7-1.0): More creative and varied outputs Recommended temperature settings by task: Code generation: 0.0-0.3 Technical writing: 0.3-0.5 General tasks: 0.7 (default) Creative writing: 0.8-1.0 ## Error Handling The server provides detailed error messages for common issues: API authentication errors Invalid parameters Rate limiting Network issues Token limit exceeded Model availability issues ## Contributing Contributions are welcome! Please feel free to submit a Pull Request. ## License MIT