Skip to main content
Glama

RagDocs MCP Server

A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.

Features

  • Add documentation with metadata

  • Semantic search through documents

  • List and organize documentation

  • Delete documents

  • Support for both Ollama (free) and OpenAI (paid) embeddings

  • Automatic text chunking and embedding generation

  • Vector storage with Qdrant

Prerequisites

  • Node.js 16 or higher

  • One of the following Qdrant setups:

    • Local instance using Docker (free)

    • Qdrant Cloud account with API key (managed service)

  • One of the following for embeddings:

    • Ollama running locally (default, free)

    • OpenAI API key (optional, paid)

Available Tools

1. add_document

Add a document to the RAG system.

Parameters:

  • url (required): Document URL/identifier

  • content (required): Document content

  • metadata (optional): Document metadata

    • title: Document title

    • contentType: Content type (e.g., "text/markdown")

2. search_documents

Search through stored documents using semantic similarity.

Parameters:

  • query (required): Natural language search query

  • options (optional):

    • limit: Maximum number of results (1-20, default: 5)

    • scoreThreshold: Minimum similarity score (0-1, default: 0.7)

    • filters:

      • domain: Filter by domain

      • hasCode: Filter for documents containing code

      • after: Filter for documents after date (ISO format)

      • before: Filter for documents before date (ISO format)

3. list_documents

List all stored documents with pagination and grouping options.

Parameters (all optional):

  • page: Page number (default: 1)

  • pageSize: Number of documents per page (1-100, default: 20)

  • groupByDomain: Group documents by domain (default: false)

  • sortBy: Sort field ("timestamp", "title", or "domain")

  • sortOrder: Sort order ("asc" or "desc")

4. delete_document

Delete a document from the RAG system.

Parameters:

  • url (required): URL of the document to delete

Installation

npm install -g @mcpservers/ragdocs

MCP Server Configuration

{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama" } } } }

Using Qdrant Cloud:

{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "https://your-cluster-url.qdrant.tech", "QDRANT_API_KEY": "your-qdrant-api-key", "EMBEDDING_PROVIDER": "ollama" } } } }

Using OpenAI:

{ "mcpServers": { "ragdocs": { "command": "node", "args": ["@mcpservers/ragdocs"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "openai", "OPENAI_API_KEY": "your-api-key" } } } }

Local Qdrant with Docker

docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant

Environment Variables

  • QDRANT_URL: URL of your Qdrant instance

  • QDRANT_API_KEY: API key for Qdrant Cloud (required when using cloud instance)

  • EMBEDDING_PROVIDER: Choice of embedding provider ("ollama" or "openai", default: "ollama")

  • OPENAI_API_KEY: OpenAI API key (required if using OpenAI)

  • EMBEDDING_MODEL: Model to use for embeddings

    • For Ollama: defaults to "nomic-embed-text"

    • For OpenAI: defaults to "text-embedding-3-small"

License

Apache License 2.0

-
security - not tested
A
license - permissive license
-
quality - not tested

Related MCP Servers

  • -
    security
    -
    license
    -
    quality
    Facilitates knowledge graph representation with semantic search using Qdrant, supporting OpenAI embeddings for semantic similarity and robust HTTPS integration with file-based graph persistence.
    Last updated -
    7
    16
    • Linux
    • Apple
  • -
    security
    A
    license
    -
    quality
    Enables semantic search across multiple Qdrant vector database collections, supporting multi-query capability and providing semantically relevant document retrieval with configurable result counts.
    Last updated -
    46
    MIT License
  • -
    security
    F
    license
    -
    quality
    This server enables semantic search capabilities using Qdrant vector database and OpenAI embeddings, allowing users to query collections, list available collections, and view collection information.
    Last updated -
    6
  • A
    security
    A
    license
    A
    quality
    An open-source platform for Retrieval-Augmented Generation (RAG). Upload documents and query them ⚡
    Last updated -
    1
    17
    22
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/heltonteixeira/ragdocs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server