Skip to main content
Glama

Grabba MCP Server

by grabba-dev

Grabba MCP Server

This repository contains the Grabba Microservice Connector Protocol (MCP) server, designed to expose Grabba API functionalities as a set of callable tools. Built on FastMCP, this server allows AI agents, orchestrators (like LangChain), and other applications to seamlessly interact with the Grabba data extraction and management services.

Table of Contents

  1. Features
  2. Getting Started
  3. Configuration
  4. Available Tools
  5. Connecting to the MCP Server
  6. Development Notes
  7. Links & Resources
  8. License

Features

  • Grabba API Exposure: Exposes key Grabba API functionalities (data extraction, job management, statistics) as accessible tools.
  • Multiple Transports: Supports stdio, streamable-http, and sse transports, offering flexibility for different deployment and client scenarios.
  • Dependency Injection: Leverages FastAPI's robust dependency injection for secure and efficient GrabbaService initialization (e.g., handling API keys).
  • Containerized Deployment: Optimized for Docker for easy packaging and deployment.
  • Configurable: Allows configuration via environment variables and command-line arguments.

Getting Started

Prerequisites

  • Python 3.10+
  • Docker (for containerized deployment)
  • A Grabba API Key (you can get one from the Grabba website)

Installation

The grabba-mcp package is available on PyPI. This is the simplest way to get started.

pip install grabba-mcp
From Source (Development)

If you plan to contribute or modify the server, you'll want to install from source.

  1. Clone the repository:
    git clone https://github.com/grabba-dev/grabba-mcp cd grabba-mcp
  2. Install Poetry: If you don't have Poetry installed, follow their official guide:
    pip install poetry
  3. Install project dependencies: Navigate to the apps/mcp directory where pyproject.toml resides, then install:
    cd apps/mcp poetry install

Running the Server

Locally

After installation (either via pip or from source), you can run the server.

  1. Create a .env file: In the apps/mcp directory (if running from source) or the directory from which you'll execute the grabba-mcp command, create a .env file and add your Grabba API key:
    API_KEY="YOUR_API_KEY_HERE" # Optional: configure the server port PORT=8283 # Optional: configure the default transport (overridden by CLI) MCP_SERVER_TRANSPORT="streamable-http"
  2. Execute the server:
    • If installed via pip:
      grabba-mcp
      To specify a transport via command line:
      grabba-mcp streamable-http
    • If running from source (using Poetry):
      cd apps/mcp poetry run python src/server.py
      To specify a transport via command line:
      poetry run python src/server.py stdio

    You should see output indicating the server is starting and listening on the specified port (e.g., http://0.0.0.0:8283) if using HTTP transports. Note that the stdio transport will exit after a single request/response cycle, making it unsuitable for persistent services.

Docker Container

A pre-built Docker image is available on Docker Hub, making deployment straightforward.

  1. Pull the image:
    docker pull itsobaa/grabba-mcp:latest
  2. Run the container: For a persistent server, you'll typically use the streamable-http transport and map ports.
    docker run -d \ -p 8283:8283 \ -e API_KEY="YOUR_API_KEY_HERE" \ -e MCP_SERVER_TRANSPORT="streamable-http" \ itsobaa/grabba-mcp:latest
    You can also use docker-compose for more complex setups:
    # docker-compose.yml version: '3.8' services: grabba-mcp: image: itsobaa/grabba-mcp:latest container_name: grabba-mcp environment: API_KEY: ${API_KEY} # Reads from a .env file next to docker-compose.yml MCP_SERVER_TRANSPORT: streamable-http PORT: 8283 ports: - "8283:8283" healthcheck: test: ["CMD-SHELL", "curl -f http://localhost:8283/tools/openapi.json || exit 1"] interval: 10s timeout: 5s retries: 5
    With a docker-compose.yml file, create a .env file next to it (e.g., API_KEY="YOUR_API_KEY_HERE") and run:
    docker-compose up -d
Public Instance

The Grabba MCP Server is publicly accessible at:

  • URL: https://mcp.grabba.dev/
  • Transports: Supports sse and streamable-http.
  • Authentication: Requires an API_KEY header with your Grabba API key.

Configuration

The server can be configured via environment variables and command-line arguments.

Environment Variables

  • API_KEY (Required): Your Grabba API key. This is critical for authenticating with Grabba services.
  • PORT (Optional, default: 8283): The port on which the MCP server's HTTP transports (streamable-http, sse) will listen.
  • MCP_SERVER_TRANSPORT (Optional, default: stdio): The default transport protocol for the MCP server. Can be stdio, streamable-http, or sse.

Command-Line Arguments

The server also accepts a single positional command-line argument which overrides MCP_SERVER_TRANSPORT:

grabba-mcp [transport_protocol] # or for source: python src/server.py [transport_protocol]
  • [transport_protocol]: Can be stdio, streamable-http, or sse.
    • Example: grabba-mcp streamable-http

Available Tools

The Grabba MCP Server exposes a suite of tools that wrap the Grabba Python SDK functionalities.

Authentication

For streamable-http and sse transports, authentication is performed by including an API_KEY HTTP header with your Grabba API Key. Example: API_KEY: YOUR_API_KEY_HERE

For stdio transport, the API_KEY environment variable must be set in the environment where the grabba-mcp command is executed, as there are no HTTP headers in this communication mode.

Tool Details

extract_data
  • Description: Schedules a new data extraction job with Grabba. Suitable for web search tasks.
  • Input: Job object (Pydantic model) detailing the extraction tasks.
  • Output: tuple[str, Optional[Dict]] - A message and the JobResult as a dictionary.
schedule_existing_job
  • Description: Schedules an existing Grabba job to run immediately.
  • Input: job_id (string) - The ID of the existing job.
  • Output: tuple[str, Optional[Dict]] - A message and the JobResult as a dictionary.
fetch_all_jobs
  • Description: Fetches all Grabba jobs for the current user.
  • Input: None.
  • Output: tuple[str, Optional[List[Job]]] - A message and a list of Job objects.
fetch_specific_job
  • Description: Fetches details of a specific Grabba job by its ID.
  • Input: job_id (string) - The ID of the job.
  • Output: tuple[str, Optional[Job]] - A message and the Job object.
delete_job
  • Description: Deletes a specific Grabba job.
  • Input: job_id (string) - The ID of the job to delete.
  • Output: tuple[str, None] - A success message.
fetch_job_result
  • Description: Fetches results of a completed Grabba job by its result ID.
  • Input: job_result_id (string) - The ID of the job result.
  • Output: tuple[str, Optional[Dict]] - A message and the job result data as a dictionary.
delete_job_result
  • Description: Deletes results of a completed Grabba job.
  • Input: job_result_id (string) - The ID of the job result to delete.
  • Output: tuple[str, None] - A success message.
fetch_stats_data
  • Description: Fetches usage statistics and current user token balance for Grabba.
  • Input: None.
  • Output: tuple[str, Optional[JobStats]] - A message and the JobStats object.
estimate_job_cost
  • Description: Estimates the cost of a Grabba job before creation or scheduling.
  • Input: Job object (Pydantic model) detailing the extraction tasks.
  • Output: tuple[str, Optional[Dict]] - A message and the estimated cost details as a dictionary.
create_job
  • Description: Creates a new data extraction job in Grabba without immediately scheduling it for execution.
  • Input: Job object (Pydantic model) detailing the extraction tasks.
  • Output: tuple[str, Optional[Job]] - A message and the created Job object.
fetch_available_regions
  • Description: Fetches a list of all available puppet (web agent) regions that can be used for scheduling web data extractions.
  • Input: None.
  • Output: tuple[str, Optional[List[PuppetRegion]]] - A message and a list of PuppetRegion objects.

Connecting to the MCP Server

The MultiServerMCPClient from mcp.client is designed to connect to FastMCP servers.

Python Client (LangChain Example)

This example assumes you have the mcp-client package installed (often as part of a larger LangChain/Agent setup), along with grabba and pydantic.

import asyncio import os from typing import List, Dict, Optional from langchain_core.tools import BaseTool, Tool from mcp.models.mcp_server_config import McpServerConfig, McpServer from mcp.client.transports.streamable_http import StreamableHttpConnection from mcp.client.transports.stdio import StdioConnection from mcp.client.multi_server_client import MultiServerMCPClient from grabba import Job, JobStats, PuppetRegion # Import necessary Grabba Pydantic models from dotenv import load_dotenv # For loading API key from .env async def connect_and_use_mcp_tools(mcp_server_configs: List[McpServerConfig], api_key: Optional[str] = None) -> List[Tool]: """ Connects to the MCP server(s), discovers its tools, and wraps them as LangChain Tools. Handles API key injection for HTTP connections. """ try: mcp_client_config = {} for config in mcp_server_configs: # Pydantic V2 model validation mcp_server_model = McpServer.model_validate(config.mcp_server.model_dump()) connection_headers = {} if api_key: # Use standard header name for API keys connection_headers["API_KEY"] = api_key if mcp_server_model.transport == "streamable_http": server_params: StreamableHttpConnection = { "transport": "streamable_http", "url": str(mcp_server_model.url), "env": config.env_variables or {}, # For other env variables, if any "headers": connection_headers # Pass headers for HTTP transports } elif mcp_server_model.transport == "stdio": server_params: StdioConnection = { "transport": "stdio", "command": mcp_server_model.command, "args": mcp_server_model.args, "env": config.env_variables # For stdio, env maps to subprocess env vars } else: raise ValueError(f"Unsupported transport: {mcp_server_model.transport}") print(f"Client connecting with params: {server_params}") mcp_client_config[mcp_server_model.name] = server_params mcp_client = MultiServerMCPClient(mcp_client_config) tools: List[BaseTool] = await mcp_client.get_tools() print(f"Successfully loaded {len(tools)} tools.") return tools except Exception as e: print(f"Error connecting to MCP server or loading tools: {e}") return [] async def main(): load_dotenv() # Load API key from a client-side .env file API_KEY = os.getenv("API_KEY", "YOUR_API_KEY_HERE_IF_NOT_ENV") # --- Configuration for Streamable HTTP Transport (Local or Public Instance) --- # For local: url="http://localhost:8283" # For public: url="https://mcp.grabba.dev/" http_mcp_config = McpServerConfig( mcp_server=McpServer( name="grabba-agent-http", transport="streamable_http", url="http://localhost:8283" # Or "https://mcp.grabba.dev/" for public ) ) print("\n--- Connecting via Streamable HTTP ---") http_tools = await connect_and_use_mcp_tools( mcp_server_configs=[http_mcp_config], api_key=API_KEY ) if http_tools: print("\nAvailable HTTP Tools:") for tool in http_tools: print(f"- {tool.name}: {tool.description.split('.')[0]}.") # Example: Using the extract_data tool (adjust as per your Job Pydantic model) extract_tool = next((t for t in http_tools if t.name == "extract_data"), None) if extract_tool: print("\n--- Testing extract_data tool via HTTP ---") sample_job = Job( url="https://example.com/some-page", type="markdown", # or "pdf", "html" etc. parser="text-content", strategy="auto" # ... other required fields for Job ) try: result_msg, result_data = await extract_tool.ainvoke({"extraction_data": sample_job}) print(f"Extraction Result (HTTP): {result_msg}") if result_data: print(f"Extraction Data (HTTP): {result_data.get('extracted_text', 'No text extracted')[:100]}...") # Print first 100 chars except Exception as e: print(f"Error calling extract_data via HTTP: {e}") else: print("extract_data tool not found in HTTP tools.") # Example: Using fetch_all_jobs tool fetch_jobs_tool = next((t for t in http_tools if t.name == "fetch_all_jobs"), None) if fetch_jobs_tool: print("\n--- Testing fetch_all_jobs tool via HTTP ---") try: result_msg, jobs_list = await fetch_jobs_tool.ainvoke({}) print(f"Fetch Jobs Result (HTTP): {result_msg}") if jobs_list: print(f"Fetched {len(jobs_list)} jobs.") for job in jobs_list[:2]: # Print first 2 jobs print(f" - Job ID: {job.job_id}, URL: {job.url}") except Exception as e: print(f"Error calling fetch_all_jobs via HTTP: {e}") # Example: Using fetch_stats_data tool fetch_stats_tool = next((t for t in http_tools if t.name == "fetch_stats_data"), None) if fetch_stats_tool: print("\n--- Testing fetch_stats_data tool via HTTP ---") try: result_msg, stats_data = await fetch_stats_tool.ainvoke({}) print(f"Fetch Stats Result (HTTP): {result_msg}") if stats_data: print(f"Token Balance (HTTP): {stats_data.token_balance}") print(f"Jobs Run (HTTP): {stats_data.jobs_run_count}") except Exception as e: print(f"Error calling fetch_stats_data via HTTP: {e}") # --- Configuration for Stdio Transport (e.g., to a Docker container running the server) --- # This assumes you have the 'itsobaa/grabba-mcp:latest' Docker image available. # The client launches a temporary Docker container for each tool call. stdio_mcp_config = McpServerConfig( mcp_server=McpServer( name="grabba-agent-stdio", transport="stdio", command="docker", args=[ "run", "-i", # Keep STDIN open for interactive communication "--rm", # Remove container after exit "itsobaa/grabba-mcp:latest", # The Docker Hub image for Grabba MCP server "grabba-mcp", "stdio" # Command to run the server in stdio mode inside container ], env_variables={"API_KEY": API_KEY} # Pass API key as env var for stdio ) ) print("\n--- Connecting via Stdio (to Docker container as a subprocess) ---") stdio_tools = await connect_and_use_mcp_tools( mcp_server_configs=[stdio_mcp_config], api_key=API_KEY # Client might still pass for internal consistency, though env_variables is primary for stdio ) if stdio_tools: print("\nAvailable Stdio Tools:") for tool in stdio_tools: print(f"- {tool.name}: {tool.description.split('.')[0]}.") # Example: Using the fetch_available_regions tool via Stdio fetch_regions_tool = next((t for t in stdio_tools if t.name == "fetch_available_regions"), None) if fetch_regions_tool: print("\n--- Testing fetch_available_regions tool via Stdio ---") try: result_msg, regions_list = await fetch_regions_tool.ainvoke({}) print(f"Fetch Regions Result (Stdio): {result_msg}") if regions_list: print(f"Fetched {len(regions_list)} regions.") for region in regions_list[:3]: # Print first 3 regions print(f" - {region.display_name} ({region.code})") except Exception as e: print(f"Error calling fetch_available_regions via Stdio: {e}") else: print("fetch_available_regions tool not found in Stdio tools.") if __name__ == "__main__": asyncio.run(main())

Development Notes

Project Structure

your_project_root/ ├── src/ │ └── server.py # Main FastMCP server application ├── .env # Environment variables for local development ├── pyproject.toml # Poetry project configuration └── poetry.lock # Poetry dependency lock file ├── Dockerfile # Docker build instructions for the server ├── docker-compose.yml # Docker Compose configuration for local development/deployment ├── .dockerignore # Files to ignore during Docker build ├── .env # Example .env for docker-compose (for API_KEY) ├── README.md # This documentation file ├── pyproject.toml # Root pyproject.toml (if using monorepo structure) ├── poetry.lock # Root poetry.lock (if using monorepo structure) ├── src/ # Source code (often for the root project if it's a monorepo) ├── tests/ # Project tests └── ... (other project files like dist, docs, tox.ini, project.json etc.)

Running Tests

To run tests (as configured by your pyproject.toml):

poetry run pytest


License

This project is licensed under the Proprietary License. Please see the LICENSE file in the repository root for full details.


-
security - not tested
-
license - not tested
-
quality - not tested

Microservice Connector Protocol server that exposes Grabba API functionalities as callable tools, allowing AI agents and applications to interact with Grabba's data extraction and management services.

  1. Table of Contents
    1. Features
      1. Getting Started
        1. Prerequisites
        2. Installation
        3. Running the Server
      2. Configuration
        1. Environment Variables
        2. Command-Line Arguments
      3. Available Tools
        1. Authentication
        2. Tool Details
      4. Connecting to the MCP Server
        1. Python Client (LangChain Example)
      5. Development Notes
        1. Project Structure
        2. Running Tests
      6. Links & Resources
        1. License

          MCP directory API

          We provide all the information about MCP servers via our MCP API.

          curl -X GET 'https://glama.ai/api/mcp/v1/servers/grabba-dev/grabba-mcp'

          If you have feedback or need assistance with the MCP directory API, please join our Discord server