Skip to main content
Glama

Django Firebase MCP

Django Firebase MCP

A comprehensive Django app that implements Firebase Model Context Protocol (MCP) server, enabling AI agents to interact with Firebase services through a standardized protocol.

🚀 Quick Start

Get up and running in under 5 minutes with the standalone Firebase agent for testing.

Prerequisites

  • Python 3.11+
  • Firebase project with Admin SDK
  • Git (optional)
  • Redis (optional, for persistent state management)

1. Clone & Setup

git clone https://github.com/your-repo/django-firebase-mcp.git cd django-firebase-mcp

2. Install Dependencies

pip install -r requirements.txt

3. Firebase Setup

Get Firebase Credentials
  1. Go to Firebase Console
  2. Select your project (or create a new one)
  3. Navigate to Project SettingsService Accounts
  4. Click "Generate new private key"
  5. Download the JSON file and save it as credentials.json in the project root
Enable Firebase Services

Make sure these services are enabled in your Firebase project:

  • Authentication (for user management)
  • Firestore Database (for document storage)
  • Cloud Storage (for file uploads)

4. Environment Configuration

Create a .env file in the project root:

# Firebase Configuration SERVICE_ACCOUNT_KEY_PATH=credentials.json FIREBASE_STORAGE_BUCKET=your-project-id.appspot.com # MCP Configuration MCP_TRANSPORT=http MCP_HOST=127.0.0.1 MCP_PORT=8001 # Django Settings DEBUG=True SECRET_KEY=your-secret-key-here

⚠️ Important: Replace your-project-id with your actual Firebase project ID.

5. State Management Setup

The Firebase MCP agent uses state management for conversation persistence. Choose one option:

Install and run Redis on port 6379:

# Install Redis using Chocolatey choco install redis-64 # Or download from: https://github.com/microsoftarchive/redis/releases # Then run Redis server redis-server

Add to your .env file:

# Redis Configuration REDIS_URL=redis://localhost:6379 USE_REDIS=true
Option B: InMemorySaver (Quick Testing)

For quick testing without Redis, the agent will automatically use InMemorySaver. No additional setup required.

Add to your .env file:

# Memory-based state (no persistence) USE_REDIS=false

Note: InMemorySaver doesn't persist conversations between restarts, while Redis maintains state across sessions.

6. Quick Test with Standalone Agent

Test your setup immediately with the standalone Firebase agent:

# Run the standalone agent python firebase_admin_mcp/standalone_firebase_agent.py

You should see:

🔥 Firebase MCP Agent Ready! Type 'help' for available commands, 'quit' to exit. >

Try these commands:

> List all Firebase collections > Check Firebase health status > help > quit

7. Full Django Setup (Optional)

For full Django integration:

# Apply migrations python manage.py migrate # Create superuser (optional) python manage.py createsuperuser # Run Django development server python manage.py runserver 8001

The MCP server will be available at: http://127.0.0.1:8001/mcp/

🛠️ Management Commands

Core Commands

# Run standalone Firebase agent (quick testing) python firebase_admin_mcp/standalone_firebase_agent.py # Run MCP server via Django python manage.py runserver 8001 # Run MCP server in stdio mode (for MCP clients) python manage.py run_mcp --transport stdio # Run MCP server in HTTP mode python manage.py run_mcp --transport http --host 127.0.0.1 --port 8001 # Run standalone agent via Django management command python manage.py run_standalone_agent

Testing Commands

# Test Firebase connectivity python firebase_admin_mcp/tests/test_firebase_connection.py # Test MCP server completeness python firebase_admin_mcp/tests/test_mcp_complete.py # Demo Firebase agent python firebase_admin_mcp/tests/demo_firebase_agent.py # Demo standalone agent python firebase_admin_mcp/demo_standalone_agent.py

🔧 Available Tools

The MCP server provides 14 Firebase tools across three categories:

🔐 Authentication (4 tools)

  • firebase_verify_token - Verify Firebase ID tokens
  • firebase_create_custom_token - Create custom auth tokens
  • firebase_get_user - Get user info by UID
  • firebase_delete_user - Delete user accounts

📚 Firestore Database (6 tools)

  • firestore_list_collections - List all collections
  • firestore_create_document - Create new documents
  • firestore_get_document - Retrieve documents
  • firestore_update_document - Update documents
  • firestore_delete_document - Delete documents
  • firestore_query_collection - Query with filters

🗄️ Cloud Storage (4 tools)

  • storage_list_files - List files with filtering
  • storage_upload_file - Upload files
  • storage_download_file - Download files
  • storage_delete_file - Delete files

🧪 Quick Testing

Test Server Health

curl http://127.0.0.1:8001/mcp/

Test a Firebase Tool

curl -X POST http://127.0.0.1:8001/mcp/ \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "method": "tools/call", "params": { "name": "firestore_list_collections", "arguments": {} }, "id": 1 }'

🤖 AI Agent Integration

LangChain Example

from langchain_openai import ChatOpenAI from langgraph.prebuilt import create_react_agent # Import Firebase tools from firebase_admin_mcp.tools.agents.firebase_mcp_client import ALL_FIREBASE_TOOLS # Create agent with Firebase capabilities model = ChatOpenAI(model="gpt-4") agent = create_react_agent( model=model, tools=ALL_FIREBASE_TOOLS, prompt="You are a Firebase assistant with full database and storage access." ) # Use the agent response = agent.invoke({ "messages": [{"role": "user", "content": "Show me all my Firestore collections"}] })

📚 Documentation

This project includes comprehensive documentation:

  • FIREBASE_ADMIN_MCP.md - Complete technical documentation
    • Detailed API reference
    • All tool specifications
    • Advanced configuration
    • Security considerations
    • Production deployment guide
  • STANDALONE_AGENT.md - Standalone agent documentation
    • Self-contained Firebase agent
    • Complete feature overview
    • Usage examples
    • Integration patterns

🔧 Troubleshooting

Common Issues

Problem: Default app does not exist error Solution: Verify credentials.json path in .env file

Problem: Server won't start Solution: Check if port 8001 is available: netstat -an | findstr :8001

Problem: Firebase connection fails Solution: Verify Firebase services are enabled in console

Problem: Import errors Solution: Ensure all dependencies installed: pip install -r requirements.txt

Problem: Redis connection fails Solution: Verify Redis is running: redis-cli ping (should return "PONG")

Problem: State not persisting between sessions Solution: Check Redis configuration or switch to Redis from InMemorySaver

🎯 What's Next?

  1. Explore the Standalone Agent - Perfect for quick testing and demos
  2. Read the Full Documentation - See FIREBASE_ADMIN_MCP.md for complete details
  3. Integrate with Your AI Agents - Use the MCP tools in your applications
  4. Customize for Your Needs - Extend with additional Firebase operations

📝 Project Structure

django-firebase-mcp/ ├── README.md # This file ├── FIREBASE_ADMIN_MCP.md # Complete documentation ├── STANDALONE_AGENT.md # Standalone agent guide ├── requirements.txt # Python dependencies ├── credentials.json # Firebase credentials (you create this) ├── .env # Environment variables (you create this) ├── manage.py # Django management ├── firebase_admin_mcp/ # Main MCP app │ ├── standalone_firebase_agent.py # Standalone agent │ ├── tools/ # Firebase MCP tools │ ├── management/commands/ # Django commands │ └── tests/ # Test suite └── django_firebase_mcp/ # Django project settings

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Test your changes
  4. Submit a pull request

📄 License

MIT License - see LICENSE file for details.


🔥 Ready to supercharge your AI agents with Firebase?

Start with the standalone agent, then explore the full documentation for advanced usage!

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A Django app that implements Firebase Model Context Protocol server, enabling AI agents to interact with Firebase services (Authentication, Firestore Database, Cloud Storage) through a standardized protocol.

  1. 🚀 Quick Start
    1. Prerequisites
    2. Clone & Setup
    3. Install Dependencies
    4. Firebase Setup
    5. Environment Configuration
    6. State Management Setup
    7. Quick Test with Standalone Agent
    8. Full Django Setup (Optional)
  2. 🛠️ Management Commands
    1. Core Commands
    2. Testing Commands
  3. 🔧 Available Tools
    1. 🔐 Authentication (4 tools)
    2. 📚 Firestore Database (6 tools)
    3. 🗄️ Cloud Storage (4 tools)
  4. 🧪 Quick Testing
    1. Test Server Health
    2. Test a Firebase Tool
  5. 🤖 AI Agent Integration
    1. LangChain Example
  6. 📚 Documentation
    1. 🔧 Troubleshooting
      1. Common Issues
    2. 🎯 What's Next?
      1. 📝 Project Structure
        1. 🤝 Contributing
          1. 📄 License

            Related MCP Servers

            • A
              security
              F
              license
              A
              quality
              A Model Context Protocol server that allows creation and management of multiple Fireproof JSON databases with CRUD operations, querying capabilities, and cloud synchronization for sharing databases with others.
              Last updated -
              9
              2
              JavaScript
              • Apple
            • -
              security
              A
              license
              -
              quality
              A Model Context Protocol server that enables AI agents to retrieve and understand entire codebases at once, providing tools to analyze local workspaces or remote GitHub repositories.
              Last updated -
              9
              TypeScript
              MIT License
              • Linux
              • Apple
            • A
              security
              A
              license
              A
              quality
              A Model Context Protocol server that allows AI assistants to interact with Appwrite's API, providing tools to manage databases, users, functions, teams, and other resources within Appwrite projects.
              Last updated -
              84
              40
              Python
              MIT License
              • Linux
              • Apple
            • A
              security
              A
              license
              A
              quality
              A Model Context Protocol server that enables AI models to interact with both MySQL and MongoDB databases through a standardized interface, supporting comprehensive database operations including queries, schema management, and CRUD operations.
              Last updated -
              14
              6
              JavaScript
              MIT License

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/Highpolar-Softwares/django-firebase-mcp'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server