MCP Terminal Server

/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { Document } from '@genkit-ai/ai/retriever'; import { devLocalIndexerRef, devLocalRetrieverRef, } from '@genkit-ai/dev-local-vectorstore'; import { z } from 'genkit'; import { ai } from '../genkit.js'; import { AnswerOutputSchema, MenuItem, MenuItemSchema, MenuQuestionInputSchema, } from '../types'; import { s04_ragDataMenuPrompt } from './prompts'; // Define a flow which indexes items on the menu. export const s04_indexMenuItemsFlow = ai.defineFlow( { name: 's04_indexMenuItems', inputSchema: z.array(MenuItemSchema), outputSchema: z.object({ rows: z.number() }), }, async (menuItems) => { // Store each document with its text indexed, // and its original JSON data as its metadata. const documents = menuItems.map((menuItem) => { const text = `${menuItem.title} ${menuItem.price} \n ${menuItem.description}`; return Document.fromText(text, menuItem); }); await ai.index({ indexer: devLocalIndexerRef('menu-items'), documents, }); return { rows: menuItems.length }; } ); // Define a flow which generates a response to the question, // by retrieving relevant items from the menu. // View this flow's trace to see the context that was retrieved, // and how it was included in the prompt. export const s04_ragMenuQuestionFlow = ai.defineFlow( { name: 's04_ragMenuQuestion', inputSchema: MenuQuestionInputSchema, outputSchema: AnswerOutputSchema, }, async (input) => { // Retrieve the 3 most relevant menu items for the question const docs = await ai.retrieve({ retriever: devLocalRetrieverRef('menu-items'), query: input.question, options: { k: 3 }, }); const menuData: Array<MenuItem> = docs.map( (doc) => (doc.metadata || {}) as MenuItem ); // Generate the response const response = await s04_ragDataMenuPrompt({ menuData: menuData, question: input.question, }); return { answer: response.text }; } );