MCP Terminal Server
by dillip285
/**
* @license
*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @module /
*/
import { Genkit } from 'genkit';
import { GenkitPlugin, genkitPlugin } from 'genkit/plugin';
import { getDerivedParams } from './common/index.js';
import { PluginOptions } from './common/types.js';
import {
SUPPORTED_EMBEDDER_MODELS,
defineVertexAIEmbedder,
multimodalEmbedding001,
textEmbedding004,
textEmbedding005,
textEmbeddingGecko003,
textEmbeddingGeckoMultilingual001,
textMultilingualEmbedding002,
} from './embedder.js';
import {
SUPPORTED_GEMINI_MODELS,
defineGeminiKnownModel,
defineGeminiModel,
gemini,
gemini10Pro,
gemini15Flash,
gemini15Pro,
gemini20Flash001,
gemini20FlashLitePreview0205,
gemini20ProExp0205,
type GeminiConfig,
} from './gemini.js';
import {
SUPPORTED_IMAGEN_MODELS,
imagen2,
imagen3,
imagen3Fast,
imagenModel,
} from './imagen.js';
export { type PluginOptions } from './common/types.js';
export {
gemini,
gemini10Pro,
gemini15Flash,
gemini15Pro,
gemini20Flash001,
gemini20FlashLitePreview0205,
gemini20ProExp0205,
imagen2,
imagen3,
imagen3Fast,
multimodalEmbedding001,
textEmbedding004,
textEmbedding005,
textEmbeddingGecko003,
textEmbeddingGeckoMultilingual001,
textMultilingualEmbedding002,
type GeminiConfig,
};
/**
* Add Google Cloud Vertex AI to Genkit. Includes Gemini and Imagen models and text embedder.
*/
export function vertexAI(options?: PluginOptions): GenkitPlugin {
return genkitPlugin('vertexai', async (ai: Genkit) => {
const { projectId, location, vertexClientFactory, authClient } =
await getDerivedParams(options);
Object.keys(SUPPORTED_IMAGEN_MODELS).map((name) =>
imagenModel(ai, name, authClient, { projectId, location })
);
Object.keys(SUPPORTED_GEMINI_MODELS).map((name) =>
defineGeminiKnownModel(
ai,
name,
vertexClientFactory,
{
projectId,
location,
},
options?.experimental_debugTraces
)
);
if (options?.models) {
for (const modelOrRef of options?.models) {
const modelName =
typeof modelOrRef === 'string'
? modelOrRef
: // strip out the `vertexai/` prefix
modelOrRef.name.split('/')[1];
const modelRef =
typeof modelOrRef === 'string' ? gemini(modelOrRef) : modelOrRef;
defineGeminiModel({
ai,
modelName: modelRef.name,
version: modelName,
modelInfo: modelRef.info,
vertexClientFactory,
options: {
projectId,
location,
},
debugTraces: options.experimental_debugTraces,
});
}
}
Object.keys(SUPPORTED_EMBEDDER_MODELS).map((name) =>
defineVertexAIEmbedder(ai, name, authClient, { projectId, location })
);
});
}
export default vertexAI;