MCP Terminal Server

/** * @license * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ import { CachedContent, StartChatParams } from '@google-cloud/vertexai'; import { ApiClient, CachedContents, } from '@google-cloud/vertexai/build/src/resources'; import { GenerateRequest, GenkitError, z } from 'genkit'; import { logger } from 'genkit/logging'; import type { CacheConfigDetails } from './types.js'; import { calculateTTL, generateCacheKey, getContentForCache, lookupContextCache, validateContextCacheRequest, } from './utils.js'; /** * Handles context caching and transforms the chatRequest for Vertex AI. * @param apiKey * @param request * @param chatRequest * @param modelVersion * @returns */ export async function handleContextCache( apiClient: ApiClient, request: GenerateRequest<z.ZodTypeAny>, chatRequest: StartChatParams, modelVersion: string, cacheConfigDetails: CacheConfigDetails ): Promise<{ cache: CachedContent; newChatRequest: StartChatParams }> { const cachedContentsClient = new CachedContents(apiClient); const { cachedContent, chatRequest: newChatRequest } = getContentForCache( request, chatRequest, modelVersion, cacheConfigDetails ); cachedContent.model = modelVersion; const cacheKey = generateCacheKey(cachedContent); cachedContent.displayName = cacheKey; let cache; try { cache = await lookupContextCache(cachedContentsClient, cacheKey); logger.debug(`Cache hit: ${cache ? 'true' : 'false'}`); } catch (error) { logger.debug('No cache found, creating one.'); } if (!cache) { try { const createParams: CachedContent = { ...cachedContent, // TODO: make this neater - idk why they chose to stringify the ttl... ttl: JSON.stringify(calculateTTL(cacheConfigDetails)) + 's', }; cache = await cachedContentsClient.create(createParams); logger.debug(`Created new cache entry with key: ${cacheKey}`); } catch (cacheError) { logger.error( `Failed to create cache with key ${cacheKey}: ${cacheError}` ); throw new GenkitError({ status: 'INTERNAL', message: `Failed to create cache: ${cacheError}`, }); } } if (!cache) { throw new GenkitError({ status: 'INTERNAL', message: 'Failed to use context cache feature', }); } // This isn't necessary, but it's nice to have for debugging purposes. newChatRequest.cachedContent = cache.name; return { cache, newChatRequest }; } /** * Handles cache validation, creation, and usage, transforming the chatRequest if necessary. * @param apiClient The API client for Vertex AI. * @param options Plugin options containing project details and auth. * @param request The generate request passed to the model. * @param chatRequest The current chat request configuration. * @param modelVersion The version of the model being used. * @param cacheConfigDetails Configuration details for caching. * @returns A transformed chat request and cache data (if applicable). */ export async function handleCacheIfNeeded( apiClient: ApiClient, request: GenerateRequest<z.ZodTypeAny>, chatRequest: StartChatParams, modelVersion: string, cacheConfigDetails: CacheConfigDetails | null ): Promise<{ chatRequest: StartChatParams; cache: CachedContent | null }> { if ( !cacheConfigDetails || !validateContextCacheRequest(request, modelVersion) ) { return { chatRequest, cache: null }; } const { cache, newChatRequest } = await handleContextCache( apiClient, request, chatRequest, modelVersion, cacheConfigDetails ); return { chatRequest: newChatRequest, cache }; }