MCP Terminal Server

# Dev Local Vector Store for Genkit This is a simple implementation of a vector store that can be used to local development and testing. This plugin is not meant to be used in production. ## Installing the plugin ```bash npm i --save @genkit-ai/dev-local-vectorstore ``` ## Using the plugin ```ts import { Document, genkit } from 'genkit'; import { googleAI, gemini20Flash, // Replaced gemini15Flash with gemini20Flash textEmbeddingGecko001, } from '@genkit-ai/googleai'; import { devLocalVectorstore, devLocalIndexerRef, devLocalRetrieverRef, } from '@genkit-ai/dev-local-vectorstore'; const ai = genkit({ plugins: [ googleAI(), devLocalVectorstore([ { indexName: 'BobFacts', embedder: textEmbeddingGecko001, }, ]), ], model: gemini20Flash, // Use gemini20Flash }); // Reference to a local vector database storing Genkit documentation const indexer = devLocalIndexerRef('BobFacts'); const retriever = devLocalRetrieverRef('BobFacts'); async function main() { // Add documents to the index. Only do it once. await ai.index({ indexer: indexer, documents: [ Document.fromText('Bob lives on the moon.'), Document.fromText('Bob is 42 years old.'), Document.fromText('Bob likes bananas.'), Document.fromText('Bob has 11 cats.'), ], }); const question = 'How old is Bob?'; // Consistent API to retrieve most relevant documents based on semantic similarity to query const docs = await ai.retrieve({ retriever: retriever, query: question, }); const result = await ai.generate({ prompt: `Use the provided context from the Genkit documentation to answer this query: ${question}`, docs, // Pass retrieved documents to the model }); console.log(result.text); } main(); ``` The sources for this package are in the main [Genkit](https://github.com/firebase/genkit) repo. Please file issues and pull requests against that repo. Usage information and reference details can be found in [Genkit documentation](https://firebase.google.com/docs/genkit). License: Apache 2.0