MCP Terminal Server

// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 package weaviate import ( "context" "flag" "strings" "testing" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/genkit" "github.com/firebase/genkit/go/internal/fakeembedder" ) var ( testAddr = flag.String("test-weaviate-addr", "", "Weaviate address to use for tests") testScheme = flag.String("test-weaviate-scheme", "", "Weaviate scheme to use for tests") testAPIKey = flag.String("test-weaviate-api-key", "", "Weaviate API key to use for tests") testClass = flag.String("test-weaviate-class", "", "Weaviate class to use for tests") ) func TestGenkit(t *testing.T) { if *testAddr == "" { t.Skip("skipping test because -test-weaviate-addr flag not used") } if *testClass == "" { t.Skip("skipping test because -test-weaviate-class flag not used") } ctx := context.Background() g, err := genkit.New(nil) if err != nil { t.Fatal(err) } // Make two very similar vectors and one different vector. // Arrange for a fake embedder to return those vectors // when provided with documents. const dim = 768 v1 := make([]float32, dim) v2 := make([]float32, dim) v3 := make([]float32, dim) for i := range v1 { v1[i] = float32(i) v2[i] = float32(i) v3[i] = float32(dim - i) } v2[0] = 1 d1 := ai.DocumentFromText("hello1", map[string]any{"name": "hello1"}) d2 := ai.DocumentFromText("hello2", map[string]any{"name": "hello2"}) d3 := ai.DocumentFromText("goodbye", map[string]any{"name": "goodbye"}) embedder := fakeembedder.New() embedder.Register(d1, v1) embedder.Register(d2, v2) embedder.Register(d3, v3) clientCfg := &ClientConfig{ Addr: *testAddr, Scheme: *testScheme, APIKey: *testAPIKey, } client, err := Init(ctx, clientCfg) if err != nil { t.Fatal(err) } // Delete our test class so that earlier runs don't mess us up. if err := client.Schema().ClassDeleter().WithClassName(*testClass).Do(ctx); err != nil { t.Fatal(err) } classCfg := ClassConfig{ Class: *testClass, Embedder: genkit.DefineEmbedder(g, "fake", "embedder3", embedder.Embed), } indexer, retriever, err := DefineIndexerAndRetriever(ctx, g, classCfg) if err != nil { t.Fatal(err) } err = ai.Index(ctx, indexer, ai.WithIndexerDocs(d1, d2, d3)) if err != nil { t.Fatalf("Index operation failed: %v", err) } retrieverOptions := &RetrieverOptions{ Count: 2, MetadataKeys: []string{"name"}, } retrieverResp, err := ai.Retrieve(ctx, retriever, ai.WithRetrieverDoc(d1), ai.WithRetrieverOpts(retrieverOptions)) if err != nil { t.Fatalf("Retrieve operation failed: %v", err) } docs := retrieverResp.Documents if len(docs) != 2 { t.Errorf("got %d results, expected 2", len(docs)) } for _, d := range docs { text := d.Content[0].Text if !strings.HasPrefix(text, "hello") { t.Errorf("returned doc text %q does not start with %q", text, "hello") } name, ok := d.Metadata["name"] if !ok { t.Errorf("missing metadata entry for name: %v", d.Metadata) } else if !strings.HasPrefix(name.(string), "hello") { t.Errorf("metadata name entry %q does not start with %q", name, "hello") } } }