OpenRouter MCP Server

# mcp-server-qdrant: A Qdrant MCP server [![smithery badge](https://smithery.ai/badge/mcp-server-qdrant)](https://smithery.ai/protocol/mcp-server-qdrant) > The [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you’re building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need. This repository is an example of how to create a MCP server for [Qdrant](https://qdrant.tech/), a vector search engine. ## Overview A basic Model Context Protocol server for keeping and retrieving memories in the Qdrant vector search engine. It acts as a semantic memory layer on top of the Qdrant database. ## Components ### Tools 1. `qdrant-store-memory` - Store a memory in the Qdrant database - Input: - `information` (string): Memory to store - Returns: Confirmation message 2. `qdrant-find-memories` - Retrieve a memory from the Qdrant database - Input: - `query` (string): Query to retrieve a memory - Returns: Memories stored in the Qdrant database as separate messages ## Installation ### Using uv (recommended) When using [`uv`](https://docs.astral.sh/uv/) no specific installation is needed to directly run *mcp-server-qdrant*. ```shell uv run mcp-server-qdrant \ --qdrant-url "http://localhost:6333" \ --qdrant-api-key "your_api_key" \ --collection-name "my_collection" \ --fastembed-model-name "sentence-transformers/all-MiniLM-L6-v2" ``` ### Installing via Smithery To install Qdrant MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/protocol/mcp-server-qdrant): ```bash npx @smithery/cli install mcp-server-qdrant --client claude ``` ## Usage with Claude Desktop To use this server with the Claude Desktop app, add the following configuration to the "mcpServers" section of your `claude_desktop_config.json`: ```json { "qdrant": { "command": "uvx", "args": [ "mcp-server-qdrant", "--qdrant-url", "http://localhost:6333", "--qdrant-api-key", "your_api_key", "--collection-name", "your_collection_name" ] } } ``` Replace `http://localhost:6333`, `your_api_key` and `your_collection_name` with your Qdrant server URL, Qdrant API key and collection name, respectively. The use of API key is optional, but recommended for security reasons, and depends on the Qdrant server configuration. This MCP server will automatically create a collection with the specified name if it doesn't exist. By default, the server will use the `sentence-transformers/all-MiniLM-L6-v2` embedding model to encode memories. For the time being, only [FastEmbed](https://qdrant.github.io/fastembed/) models are supported, and you can change it by passing the `--fastembed-model-name` argument to the server. ### Using the local mode of Qdrant To use a local mode of Qdrant, you can specify the path to the database using the `--qdrant-local-path` argument: ```json { "qdrant": { "command": "uvx", "args": [ "mcp-server-qdrant", "--qdrant-local-path", "/path/to/qdrant/database", "--collection-name", "your_collection_name" ] } } ``` It will run Qdrant local mode inside the same process as the MCP server. Although it is not recommended for production. ## Environment Variables The configuration of the server can be also done using environment variables: - `QDRANT_URL`: URL of the Qdrant server, e.g. `http://localhost:6333` - `QDRANT_API_KEY`: API key for the Qdrant server - `COLLECTION_NAME`: Name of the collection to use - `FASTEMBED_MODEL_NAME`: Name of the FastEmbed model to use - `QDRANT_LOCAL_PATH`: Path to the local Qdrant database You cannot provide `QDRANT_URL` and `QDRANT_LOCAL_PATH` at the same time. ## License This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.