Open Data Model Context Protocol
- Research & Data
Access to many public datasets right from your LLM application.
Prompts
Interactive templates invoked by user choice
Name | Description |
---|---|
No prompts |
Resources
Contextual data attached and managed by the client
Name | Description |
---|---|
No resources |
Tools
Functions exposed to the LLM to take actions
Name | Description |
---|---|
No tools |
Server Configuration
Describes the environment variables required to run the server.
Name | Required | Description | Default |
---|---|---|---|
No arguments |
Open Data Model Context Protocol
<p align="center"> <em>Connect Open Data to LLMs in minutes!</em> </p> <p align="center"> <a href="https://github.com/OpenDataMCP/OpenDataMCP/actions/workflows/ci.yml" target="_blank"> <img src="https://github.com/OpenDataMCP/OpenDataMCP/actions/workflows/ci.yml/badge.svg" alt="CI"> </a> <a href="https://pypi.org/project/odmcp" target="_blank"> <img src="https://img.shields.io/pypi/v/odmcp?color=%2334D058&label=pypi%20package" alt="Package version"> </a> <a href="https://github.com/OpenDataMCP/OpenDataMCP/blob/main/LICENSE" target="_blank"> <img src="https://img.shields.io/github/license/OpenDataMCP/OpenDataMCP.svg" alt="License"> </a> <a href="https://pepy.tech/badge/odmcp" target="_blank"> <img src="https://pepy.tech/badge/odmcp?cache-control=no-cache" alt="License"> </a> <a href="https://github.com/OpenDataMCP/OpenDataMCP/stargazers" target="_blank"> <img src="https://img.shields.io/github/stars/OpenDataMCP/OpenDataMCP.svg?cache-control=no-cache" alt="Stars"> </a> </p>See it in action
https://github.com/user-attachments/assets/760e1a16-add6-49a1-bf71-dfbb335e893e
We enable 2 things:
- Open Data Access: Access to many public datasets right from your LLM application (starting with Claude, more to come).
- Publishing: Get community help and a distribution network to distribute your Open Data. Get everyone to use it!
How do we do that?
- Access: Setup our MCP servers in your LLM application in 2 clicks via our CLI tool (starting with Claude, see Roadmap for next steps).
- Publish: Use provided templates and guidelines to quickly contribute and publish on Open Data MCP. Make your data easily discoverable!
Usage
<u>Access</u>: Access Open Data using Open Data MCP CLI Tool
Prerequisites
If you want to use Open Data MCP with Claude Desktop app client you need to install the Claude Desktop app.
You will also need uv
to easily run our CLI and MCP servers.
macOS
Windows
Open Data MCP - CLI Tool
Overview
Example
Quickstart for the Switzerland SBB (train company) provider:
Restart Claude and you should see a new hammer icon at the bottom right of the chat.
You can now ask questions to Claude about SBB train network disruption and it will answer based on data collected on data.sbb.ch
.
<u>Publish</u>: Contribute by building and publishing public datasets
Prerequisites
- Install UV Package ManagerCopy# macOS brew install uv # Windows (PowerShell) powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" # Linux/WSL curl -LsSf https://astral.sh/uv/install.sh | sh
- Clone & Setup RepositoryCopy# Clone the repository git clone https://github.com/OpenDataMCP/OpenDataMCP.git cd OpenDataMCP # Create and activate virtual environment uv venv source .venv/bin/activate # Unix/macOS # or .venv\Scripts\activate # Windows # Install dependencies uv sync
- Install Pre-commit HooksCopy# Install pre-commit hooks for code quality pre-commit install
Publishing Instructions
- Create a New Provider Module
- Each data source needs its own python module.
- Create a new Python module in
src/odmcp/providers/
. - Use a descriptive name following the pattern:
{country_code}_{organization}.py
(e.g.,ch_sbb.py
). - Start with our template file as your base.
- Implement Required Components
- Define your Tools & Resources following the template structure
- Each Tool or Resource should have:
- Clear description of its purpose
- Well-defined input/output schemas using Pydantic models
- Proper error handling
- Documentation strings
- Tool vs Resource
- Choose Tool implementation if your data needs:
- Active querying or computation
- Parameter-based filtering
- Complex transformations
- Choose Resource implementation if your data is:
- Static or rarely changing
- Small enough to be loaded into memory
- Simple file-based content
- Reference documentation or lookup tables
- Reference the MCP documentation for guidance
- Choose Tool implementation if your data needs:
- Testing
- Add tests in the
tests/
directory - Follow existing test patterns (see other provider tests)
- Required test coverage:
- Basic functionality
- Edge cases
- Error handling
- Add tests in the
- Validation
- Test your MCP server using our experimental client:
uv run src/odmcp/providers/client.py
- Verify all endpoints respond correctly
- Ensure error messages are helpful
- Check performance with typical query loads
- Test your MCP server using our experimental client:
For other examples, check our existing providers in the src/odmcp/providers/
directory.
Contributing
We have an ambitious roadmap and we want this project to scale with the community. The ultimate goal is to make the millions of datasets publicly available to all LLM applications.
For that we need your help!
Discord
We want to build a helping community around the challenge of bringing open data to LLM's. Join us on discord to start chatting: https://discord.gg/QPFFZWKW
Our Core Guidelines
Because of our target scale we want to keep things simple and pragmatic at first. Tackle issues with the community as they come along.
- Simplicity and Maintainability
- Minimize abstractions to keep codebase simple and scalable
- Focus on clear, straightforward implementations
- Avoid unnecessary complexity
- Standardization / Templates
- Follow provided templates and guidelines consistently
- Maintain uniform structure across providers
- Use common patterns for similar functionality
- Dependencies
- Keep external dependencies to a minimum
- Prioritize single repository/package setup
- Carefully evaluate necessity of new dependencies
- Code Quality
- Format code using ruff
- Maintain comprehensive test coverage with pytest
- Follow consistent code style
- Type Safety
- Use Python type hints throughout
- Leverage Pydantic models for API request/response validation
- Ensure type safety in data handling
Tactical Topics (our current priorities)
- Initialize repository with guidelines, testing framework, and contribution workflow
- Implement CI/CD pipeline with automated PyPI releases
- Develop provider template and first reference implementation
- Integrate additional open datasets (actively seeking contributors)
- Establish clear guidelines for choosing between Resources and Tools
- Develop scalable repository architecture for long-term growth
- Expand MCP SDK parameter support (authentication, rate limiting, etc.)
- Implement additional MCP protocol features (prompts, resource templates)
- Add support for alternative transport protocols beyond stdio (SSE)
- Deploy hosted MCP servers for improved accessibility
Roadmap
Let’s build the open source infrastructure that will allow all LLMs to access all Open Data together!
Access:
- Make Open Data available to all LLM applications (beyond Claude)
- Make Open Data data sources searchable in a scalable way
- Make Open Data available through MCP remotely (SSE) with publicly sponsored infrastructure
Publish:
- Build the many Open Data MCP servers to make all the Open Data truly accessible (we need you!).
- On our side we are starting to build MCP servers for Switzerland ~12k open dataset!
- Make it even easier to build Open Data MCP servers
We are very early, and lack of dataset available is currently the bottleneck. Help yourself! Create your Open Data MCP server and get users to use it as well from their LLMs applications. Let’s connect LLMs to the millions of open datasets from governments, public entities, companies and NGOs!
As Anthropic's MCP evolves we will adapt and upgrade Open Data MCP.
Limitations
- All data served by Open Data MCP servers should be Open.
- Please oblige to the data licenses of the data providers.
- Our License must be quoted in commercial applications.
References
- Kudos to Anthropic's open source MCP release enabling initiative like this one.
License
This project is licensed under the MIT License - see the LICENSE file for details
GitHub Badge
Glama performs regular codebase and documentation scans to:
- Confirm that the MCP server is working as expected.
- Confirm that there are no obvious security issues with dependencies of the server.
- Extract server characteristics such as tools, resources, prompts, and required parameters.
Our directory badge helps users to quickly asses that the MCP server is safe, server capabilities, and instructions for installing the server.
Copy the following code to your README.md file: