MCP Docling Server

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

MCP Docling Server

An MCP server that provides document processing capabilities using the Docling library.

Installation

You can install the package using pip:

pip install -e .

Usage

Start the server using either stdio (default) or SSE transport:

# Using stdio transport (default) mcp-server-lls # Using SSE transport on custom port mcp-server-lls --transport sse --port 8000

If you're using uv, you can run the server directly without installing:

# Using stdio transport (default) uv run mcp-server-lls # Using SSE transport on custom port uv run mcp-server-lls --transport sse --port 8000

Available Tools

The server exposes the following tools:

  1. convert_document: Convert a document from a URL or local path to markdown format
    • source: URL or local file path to the document (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR, e.g. ["en", "fr"] (optional)
  2. convert_document_with_images: Convert a document and extract embedded images
    • source: URL or local file path to the document (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR (optional)
  3. extract_tables: Extract tables from a document as structured data
    • source: URL or local file path to the document (required)
  4. convert_batch: Process multiple documents in batch mode
    • sources: List of URLs or file paths to documents (required)
    • enable_ocr: Whether to enable OCR for scanned documents (optional, default: false)
    • ocr_language: List of language codes for OCR (optional)
  5. get_system_info: Get information about system configuration and acceleration status

Example with Llama Stack

https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1

You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL

from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack_client.types.shared_params.url import URL from llama_stack_client import LlamaStackClient import os # Set your model ID model_id = os.environ["INFERENCE_MODEL"] client = LlamaStackClient( base_url=f"http://localhost:{os.environ.get('LLAMA_STACK_PORT', '8080')}" ) # Register MCP tools client.toolgroups.register( toolgroup_id="mcp::docling", provider_id="model-context-protocol", mcp_endpoint=URL(uri="http://0.0.0.0:8000/sse")) # Define an agent with MCP toolgroup agent_config = AgentConfig( model=model_id, instructions="""You are a helpful assistant with access to tools that can convert documents to markdown. When asked to convert a document, use the 'convert_document' tool. You can also extract tables with 'extract_tables' or get images with 'convert_document_with_images'. Always use the appropriate tool when asked to process documents.""", toolgroups=["mcp::docling"], tool_choice="auto", max_tool_calls=3, ) # Create the agent agent = Agent(client, agent_config) # Create a session session_id = agent.create_session("test-session") # Define the prompt prompt = "Please convert the document at https://arxiv.org/pdf/2004.07606 to markdown and summarize its content." # Create a turn response = agent.create_turn( messages=[ { "role": "user", "content": prompt, } ], session_id=session_id, ) # Log the response for log in EventLogger().log(response): log.print()

Caching

The server caches processed documents in ~/.cache/mcp-docling/ to improve performance for repeated requests.

-
security - not tested
A
license - permissive license
-
quality - not tested

A server that provides document processing capabilities using the Model Context Protocol, allowing conversion of documents to markdown, extraction of tables, and processing of document images.

  1. Installation
    1. Usage
      1. Available Tools
        1. Example with Llama Stack
          1. Caching