MCP Docling Server
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
MCP Docling Server
An MCP server that provides document processing capabilities using the Docling library.
Installation
You can install the package using pip:
Usage
Start the server using either stdio (default) or SSE transport:
If you're using uv, you can run the server directly without installing:
Available Tools
The server exposes the following tools:
- convert_document: Convert a document from a URL or local path to markdown format
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR, e.g. ["en", "fr"] (optional)
- convert_document_with_images: Convert a document and extract embedded images
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)
- extract_tables: Extract tables from a document as structured data
source
: URL or local file path to the document (required)
- convert_batch: Process multiple documents in batch mode
sources
: List of URLs or file paths to documents (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)
- get_system_info: Get information about system configuration and acceleration status
Example with Llama Stack
https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1
You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL
Caching
The server caches processed documents in ~/.cache/mcp-docling/
to improve performance for repeated requests.
This server cannot be installed
A server that provides document processing capabilities using the Model Context Protocol, allowing conversion of documents to markdown, extraction of tables, and processing of document images.