MCP-Ragdocs
MCP-Ragdocs
A Model Context Protocol (MCP) server that enables semantic search and retrieval of documentation using a vector database (Qdrant). This server allows you to add documentation from URLs or local files and then search through them using natural language queries.
Version
Current version: 0.1.6
Features
- Add documentation from URLs or local files
- Store documentation in a vector database for semantic search
- Search through documentation using natural language
- List all documentation sources
Installation
Install globally using npm:
This will install the server in your global npm directory, which you'll need for the configuration steps below.
Requirements
- Node.js 16 or higher
- Qdrant (either local or cloud)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Qdrant Setup Options
Option 1: Local Qdrant
- Using Docker (recommended):
- Or download from Qdrant's website
Option 2: Qdrant Cloud
- Create an account at Qdrant Cloud
- Create a new cluster
- Get your cluster URL and API key from the dashboard
- Use these in your configuration (see Configuration section below)
Configuration
The server can be used with both Cline and Claude Desktop. Configuration differs slightly between them:
Cline Configuration
Add to your Cline settings file (%AppData%\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\cline_mcp_settings.json
):
- Using npm global install (recommended):
For OpenAI instead of Ollama:
- Using local development setup:
Claude Desktop Configuration
Add to your Claude Desktop config file:
- Windows:
%AppData%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows Setup with Ollama (using full paths):
Windows Setup with OpenAI:
- macOS Setup with Ollama:
Qdrant Cloud Configuration
For either Cline or Claude Desktop, when using Qdrant Cloud, modify the env section:
With Ollama:
With OpenAI:
Environment Variables
Qdrant Configuration
QDRANT_URL
(required): URL of your Qdrant instance- For local: http://localhost:6333
- For cloud: https://your-cluster-url.qdrant.tech
QDRANT_API_KEY
(required for cloud): Your Qdrant Cloud API key
Embeddings Configuration
EMBEDDING_PROVIDER
(optional): Choose between 'ollama' (default) or 'openai'EMBEDDING_MODEL
(optional):- For Ollama: defaults to 'nomic-embed-text'
- For OpenAI: defaults to 'text-embedding-3-small'
OLLAMA_URL
(optional): URL of your Ollama instance (defaults to http://localhost:11434)OPENAI_API_KEY
(required if using OpenAI): Your OpenAI API key
Available Tools
add_documentation
- Add documentation from a URL to the RAG database
- Parameters:
url
: URL of the documentation to fetch
search_documentation
- Search through stored documentation
- Parameters:
query
: Search querylimit
(optional): Maximum number of results to return (default: 5)
list_sources
- List all documentation sources currently stored
- No parameters required
Example Usage
In Claude Desktop or any other MCP-compatible client:
- Add documentation:
- Search documentation:
- List sources:
Development
- Clone the repository:
- Install dependencies:
- Build the project:
- Run locally:
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
A Model Context Protocol (MCP) server that enables semantic search and retrieval of documentation using a vector database (Qdrant). This server allows you to add documentation from URLs or local files and then search through them using natural language queries.