LinkedIn Browser MCP Server

  • docs
For Client Developers Get started building your own client that can integrate with all MCP servers. In this tutorial, you’ll learn how to build a LLM-powered chatbot client that connects to MCP servers. It helps to have gone through the Server quickstart that guides you through the basic of building your first server. Python Java You can find the complete code for this tutorial here. System Requirements Before starting, ensure your system meets these requirements: Mac or Windows computer Latest Python version installed Latest version of uv installed Setting Up Your Environment First, create a new Python project with uv: # Create project directory uv init mcp-client cd mcp-client # Create virtual environment uv venv # Activate virtual environment # On Windows: .venv\Scripts\activate # On Unix or MacOS: source .venv/bin/activate # Install required packages uv add mcp anthropic python-dotenv # Remove boilerplate files rm hello.py # Create our main file touch client.py Setting Up Your API Key You’ll need an Anthropic API key from the Anthropic Console. Create a .env file to store it: # Create .env file touch .env Add your key to the .env file: ANTHROPIC_API_KEY=<your key here> Add .env to your .gitignore: echo ".env" >> .gitignore Make sure you keep your ANTHROPIC_API_KEY secure! Creating the Client Basic Client Structure First, let’s set up our imports and create the basic client class: import asyncio from typing import Optional from contextlib import AsyncExitStack from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client from anthropic import Anthropic from dotenv import load_dotenv load_dotenv() # load environment variables from .env class MCPClient: def __init__(self): # Initialize session and client objects self.session: Optional[ClientSession] = None self.exit_stack = AsyncExitStack() self.anthropic = Anthropic() # methods will go here Server Connection Management Next, we’ll implement the method to connect to an MCP server: async def connect_to_server(self, server_script_path: str): """Connect to an MCP server Args: server_script_path: Path to the server script (.py or .js) """ is_python = server_script_path.endswith('.py') is_js = server_script_path.endswith('.js') if not (is_python or is_js): raise ValueError("Server script must be a .py or .js file") command = "python" if is_python else "node" server_params = StdioServerParameters( command=command, args=[server_script_path], env=None ) stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params)) self.stdio, self.write = stdio_transport self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write)) await self.session.initialize() # List available tools response = await self.session.list_tools() tools = response.tools print("\nConnected to server with tools:", [tool.name for tool in tools]) Query Processing Logic Now let’s add the core functionality for processing queries and handling tool calls: async def process_query(self, query: str) -> str: """Process a query using Claude and available tools""" messages = [ { "role": "user", "content": query } ] response = await self.session.list_tools() available_tools = [{ "name": tool.name, "description": tool.description, "input_schema": tool.inputSchema } for tool in response.tools] # Initial Claude API call response = self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1000, messages=messages, tools=available_tools ) # Process response and handle tool calls tool_results = [] final_text = [] assistant_message_content = [] for content in response.content: if content.type == 'text': final_text.append(content.text) assistant_message_content.append(content) elif content.type == 'tool_use': tool_name = content.name tool_args = content.input # Execute tool call result = await self.session.call_tool(tool_name, tool_args) tool_results.append({"call": tool_name, "result": result}) final_text.append(f"[Calling tool {tool_name} with args {tool_args}]") assistant_message_content.append(content) messages.append({ "role": "assistant", "content": assistant_message_content }) messages.append({ "role": "user", "content": [ { "type": "tool_result", "tool_use_id": content.id, "content": result.content } ] }) # Get next response from Claude response = self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1000, messages=messages, tools=available_tools ) final_text.append(response.content[0].text) return "\n".join(final_text) Interactive Chat Interface Now we’ll add the chat loop and cleanup functionality: async def chat_loop(self): """Run an interactive chat loop""" print("\nMCP Client Started!") print("Type your queries or 'quit' to exit.") while True: try: query = input("\nQuery: ").strip() if query.lower() == 'quit': break response = await self.process_query(query) print("\n" + response) except Exception as e: print(f"\nError: {str(e)}") async def cleanup(self): """Clean up resources""" await self.exit_stack.aclose() Main Entry Point Finally, we’ll add the main execution logic: async def main(): if len(sys.argv) < 2: print("Usage: python client.py <path_to_server_script>") sys.exit(1) client = MCPClient() try: await client.connect_to_server(sys.argv[1]) await client.chat_loop() finally: await client.cleanup() if __name__ == "__main__": import sys asyncio.run(main()) You can find the complete client.py file here. Key Components Explained 1. Client Initialization The MCPClient class initializes with session management and API clients Uses AsyncExitStack for proper resource management Configures the Anthropic client for Claude interactions 2. Server Connection Supports both Python and Node.js servers Validates server script type Sets up proper communication channels Initializes the session and lists available tools 3. Query Processing Maintains conversation context Handles Claude’s responses and tool calls Manages the message flow between Claude and tools Combines results into a coherent response 4. Interactive Interface Provides a simple command-line interface Handles user input and displays responses Includes basic error handling Allows graceful exit 5. Resource Management Proper cleanup of resources Error handling for connection issues Graceful shutdown procedures Common Customization Points Tool Handling Modify process_query() to handle specific tool types Add custom error handling for tool calls Implement tool-specific response formatting Response Processing Customize how tool results are formatted Add response filtering or transformation Implement custom logging User Interface Add a GUI or web interface Implement rich console output Add command history or auto-completion Running the Client To run your client with any MCP server: uv run client.py path/to/server.py # python server uv run client.py path/to/build/index.js # node server If you’re continuing the weather tutorial from the server quickstart, your command might look something like this: python client.py .../weather/src/weather/server.py The client will: Connect to the specified server List available tools Start an interactive chat session where you can: Enter queries See tool executions Get responses from Claude Here’s an example of what it should look like if connected to the weather server from the server quickstart: How It Works When you submit a query: The client gets the list of available tools from the server Your query is sent to Claude along with tool descriptions Claude decides which tools (if any) to use The client executes any requested tool calls through the server Results are sent back to Claude Claude provides a natural language response The response is displayed to you Best practices Error Handling Always wrap tool calls in try-catch blocks Provide meaningful error messages Gracefully handle connection issues Resource Management Use AsyncExitStack for proper cleanup Close connections when done Handle server disconnections Security Store API keys securely in .env Validate server responses Be cautious with tool permissions Troubleshooting Server Path Issues Double-check the path to your server script is correct Use the absolute path if the relative path isn’t working For Windows users, make sure to use forward slashes (/) or escaped backslashes (\) in the path Verify the server file has the correct extension (.py for Python or .js for Node.js) Example of correct path usage: # Relative path uv run client.py ./server/weather.py # Absolute path uv run client.py /Users/username/projects/mcp-server/weather.py # Windows path (either format works) uv run client.py C:/projects/mcp-server/weather.py uv run client.py C:\\projects\\mcp-server\\weather.py Response Timing The first response might take up to 30 seconds to return This is normal and happens while: The server initializes Claude processes the query Tools are being executed Subsequent responses are typically faster Don’t interrupt the process during this initial waiting period Common Error Messages If you see: FileNotFoundError: Check your server path Connection refused: Ensure the server is running and the path is correct Tool execution failed: Verify the tool’s required environment variables are set Timeout error: Consider increasing the timeout in your client configuration