Genkit MCP

Official
Apache 2.0
127
1,175
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { Firestore, Query, QueryDocumentSnapshot, VectorQuerySnapshot, } from '@google-cloud/firestore'; import { EmbedderArgument, Genkit, RetrieverAction, z } from 'genkit'; import { DocumentData, Part } from 'genkit/retriever'; function toContent( d: QueryDocumentSnapshot, contentField: string | ((snap: QueryDocumentSnapshot) => Part[]) ): Part[] { if (typeof contentField === 'function') { return contentField(d); } return [{ text: d.get(contentField) }]; } function toDocuments( result: VectorQuerySnapshot, vectorField: string, contentField: string | ((snap: QueryDocumentSnapshot) => Part[]), metadataFields?: | string[] | ((snap: QueryDocumentSnapshot) => Record<string, any>) ): DocumentData[] { return result.docs.map((d) => { const out: DocumentData = { content: toContent(d, contentField) }; if (typeof metadataFields === 'function') { out.metadata = metadataFields(d); return out; } out.metadata = { id: d.id }; if (metadataFields) { for (const field of metadataFields) { out.metadata[field] = d.get(field); } return out; } out.metadata = d.data(); delete out.metadata[vectorField]; if (typeof contentField === 'string') delete out.metadata[contentField]; return out; }); } /** * Define a retriever that uses vector similarity search to retrieve documents from Firestore. * You must create a vector index on the associated field before you can perform nearest-neighbor * search. **/ export function defineFirestoreRetriever( ai: Genkit, config: { /** The name of the retriever. */ name: string; /** Optional label for display in Developer UI. */ label?: string; /** The Firestore database instance from which to query. */ firestore: Firestore; /** The name of the collection from which to query. */ collection?: string; /** The embedder to use with this retriever. */ embedder: EmbedderArgument; /** The name of the field within the collection containing the vector data. */ vectorField: string; /** The name of the field containing the document content you wish to return. */ contentField: string | ((snap: QueryDocumentSnapshot) => Part[]); /** The distance measure to use when comparing vectors. Defaults to 'COSINE'. */ distanceMeasure?: 'EUCLIDEAN' | 'COSINE' | 'DOT_PRODUCT'; /** * Specifies a threshold for which no less similar documents will be returned. The behavior * of the specified `distanceMeasure` will affect the meaning of the distance threshold. * * - For `distanceMeasure: "EUCLIDEAN"`, the meaning of `distanceThreshold` is: * SELECT docs WHERE euclidean_distance <= distanceThreshold * - For `distanceMeasure: "COSINE"`, the meaning of `distanceThreshold` is: * SELECT docs WHERE cosine_distance <= distanceThreshold * - For `distanceMeasure: "DOT_PRODUCT"`, the meaning of `distanceThreshold` is: * SELECT docs WHERE dot_product_distance >= distanceThreshold */ distanceThreshold?: number; /** * Optionally specifies the name of a metadata field that will be set on each returned Document, * which will contain the computed distance for the document. */ distanceResultField?: string; /** * A list of fields to include in the returned document metadata. If not supplied, all fields other * than the vector are included. Alternatively, provide a transform function to extract the desired * metadata fields from a snapshot. **/ metadataFields?: | string[] | ((snap: QueryDocumentSnapshot) => Record<string, any>); } ): RetrieverAction { const { name, label, firestore, embedder, collection, vectorField, metadataFields, contentField, distanceMeasure, distanceThreshold, distanceResultField, } = config; return ai.defineRetriever( { name, info: { label: label || `Firestore - ${name}`, }, configSchema: z.object({ where: z.record(z.any()).optional(), limit: z.number(), /* Supply or override the distanceMeasure */ distanceMeasure: z .enum(['COSINE', 'DOT_PRODUCT', 'EUCLIDEAN']) .optional(), /* Supply or override the distanceThreshold */ distanceThreshold: z.number().optional(), /* Supply or override the metadata field where distances are stored. */ distanceResultField: z.string().optional(), /* Supply or override the collection for retrieval. */ collection: z.string().optional(), }), }, async (content, options) => { if (!options.collection && !collection) { throw new Error( 'Must specify a collection to query in Firestore retriever.' ); } let query: Query = firestore.collection( options.collection || collection! ); for (const field in options.where || {}) { query = query.where(field, '==', options.where![field]); } // Single embedding for text input const queryVector = (await ai.embed({ embedder, content }))[0].embedding; const result = await query .findNearest({ vectorField, queryVector, limit: options.limit || 10, distanceMeasure: options.distanceMeasure || distanceMeasure || 'COSINE', distanceResultField: options.distanceResultField || distanceResultField, distanceThreshold: options.distanceThreshold || distanceThreshold, }) .get(); return { documents: toDocuments( result, vectorField, contentField, metadataFields ), }; } ); }