Smartsheet MCP Server
remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
Integrations
Integrates with Azure OpenAI API for batch analysis capabilities, enabling summarization, sentiment analysis, custom scoring, and research impact assessment on Smartsheet data.
Provides integration with Smartsheet platform, enabling intelligent operations for document management, data manipulation, column customization, batch analysis, and conditional updates of Smartsheet documents. Supports healthcare-specific analytics including clinical research, hospital operations, and healthcare innovation.
Smartsheet MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Smartsheet, enabling automated operations on Smartsheet documents through a standardized interface. This server bridges the gap between AI-powered automation tools and Smartsheet's powerful collaboration platform.
Overview
The Smartsheet MCP Server is designed to facilitate intelligent interactions with Smartsheet, providing a robust set of tools for document management, data operations, and column customization. It serves as a critical component in automated workflows, enabling AI systems to programmatically interact with Smartsheet data while maintaining data integrity and enforcing business rules.
Key Benefits
- Intelligent Integration: Seamlessly connects AI systems with Smartsheet's collaboration platform
- Data Integrity: Enforces validation rules and maintains referential integrity across operations
- Formula Management: Preserves and updates formula references automatically
- Flexible Configuration: Supports various column types and complex data structures
- Error Resilience: Implements comprehensive error handling and validation at multiple layers
- Healthcare Analytics: Specialized analysis capabilities for clinical and research data
- Batch Processing: Efficient handling of large healthcare datasets
- Custom Scoring: Flexible scoring systems for healthcare initiatives and research
Use Cases
- Clinical Research Analytics
- Protocol compliance scoring
- Patient data analysis
- Research impact assessment
- Clinical trial data processing
- Automated research note summarization
- Hospital Operations
- Resource utilization analysis
- Patient satisfaction scoring
- Department efficiency metrics
- Staff performance analytics
- Quality metrics tracking
- Healthcare Innovation
- Pediatric alignment scoring
- Innovation impact assessment
- Research prioritization
- Implementation feasibility analysis
- Clinical value assessment
- Automated Document Management
- Programmatic sheet structure modifications
- Dynamic column creation and management
- Automated data validation and formatting
- Data Operations
- Bulk data updates with integrity checks
- Intelligent duplicate detection
- Formula-aware modifications
- System Integration
- AI-driven sheet customization
- Automated reporting workflows
- Cross-system data synchronization
Integration Points
The server integrates with:
- Smartsheet API for data operations
- MCP protocol for standardized communication
- Local development tools via stdio interface
- Monitoring systems through structured logging
Architecture
The server implements a bridge architecture between MCP and Smartsheet:
- TypeScript MCP Layer (
src/index.ts
)- Handles MCP protocol communication
- Registers and manages available tools
- Routes requests to Python implementation
- Manages configuration and error handling
- Python CLI Layer (
smartsheet_ops/cli.py
)- Provides command-line interface for operations
- Handles argument parsing and validation
- Implements duplicate detection
- Manages JSON data formatting
- Core Operations Layer (
smartsheet_ops/__init__.py
)- Implements Smartsheet API interactions
- Handles complex column type management
- Provides data normalization and validation
- Manages system columns and formula parsing
Column Management Flow
Error Handling Flow
Features
Tools
get_column_map
(Read)- Retrieves column mapping and sample data from a Smartsheet
- Provides detailed column metadata including:
- Column types (system columns, formulas, picklists)
- Validation rules
- Format specifications
- Auto-number configurations
- Returns sample data for context
- Includes usage examples for writing data
smartsheet_write
(Create)- Writes new rows to Smartsheet with intelligent handling of:
- System-managed columns
- Multi-select picklist values
- Formula-based columns
- Implements automatic duplicate detection
- Returns detailed operation results including row IDs
- Writes new rows to Smartsheet with intelligent handling of:
smartsheet_update
(Update)- Updates existing rows in a Smartsheet
- Supports partial updates (modify specific fields)
- Maintains data integrity with validation
- Handles multi-select fields consistently
- Returns success/failure details per row
smartsheet_delete
(Delete)- Deletes rows from a Smartsheet
- Supports batch deletion of multiple rows
- Validates row existence and permissions
- Returns detailed operation results
smartsheet_add_column
(Column Management)- Adds new columns to a Smartsheet
- Supports all column types:
- TEXT_NUMBER
- DATE
- CHECKBOX
- PICKLIST
- CONTACT_LIST
- Configurable options:
- Position index
- Validation rules
- Formula definitions
- Picklist options
- Enforces column limit (400) with validation
- Returns detailed column information
smartsheet_delete_column
(Column Management)- Safely deletes columns with dependency checking
- Validates formula references before deletion
- Prevents deletion of columns used in formulas
- Returns detailed dependency information
- Supports force deletion option
smartsheet_rename_column
(Column Management)- Renames columns while preserving relationships
- Updates formula references automatically
- Maintains data integrity
- Validates name uniqueness
- Returns detailed update information
smartsheet_bulk_update
(Conditional Updates)- Performs conditional bulk updates based on rules
- Supports complex condition evaluation:
- Multiple operators (equals, contains, greaterThan, etc.)
- Type-specific comparisons (text, dates, numbers)
- Empty/non-empty checks
- Batch processing with configurable size
- Comprehensive error handling and rollback
- Detailed operation results tracking
start_batch_analysis
(Healthcare Analytics)- Processes entire sheets or selected rows with AI analysis
- Supports multiple analysis types:
- Summarization of clinical notes
- Sentiment analysis of patient feedback
- Custom scoring for healthcare initiatives
- Research impact assessment
- Features:
- Automatic batch processing (50 rows per batch)
- Progress tracking and status monitoring
- Error handling with detailed reporting
- Customizable analysis goals
- Support for multiple source columns
get_job_status
(Analysis Monitoring)- Tracks batch analysis progress
- Provides detailed job statistics:
- Total rows to process
- Processed row count
- Failed row count
- Processing timestamps
- Real-time status updates
- Comprehensive error reporting
cancel_batch_analysis
(Job Control)- Cancels running batch analysis jobs
- Graceful process termination
- Maintains data consistency
- Returns final job status
Key Capabilities
- Column Type Management
- Handles system column types (AUTO_NUMBER, CREATED_DATE, etc.)
- Supports formula parsing and dependency tracking
- Manages picklist options and multi-select values
- Comprehensive column operations (add, delete, rename)
- Formula reference preservation and updates
- Data Validation
- Automatic duplicate detection
- Column type validation
- Data format verification
- Column dependency analysis
- Name uniqueness validation
- Metadata Handling
- Extracts and processes column metadata
- Handles validation rules
- Manages format specifications
- Tracks formula dependencies
- Maintains column relationships
- Healthcare Analytics
- Clinical note summarization
- Patient feedback sentiment analysis
- Protocol compliance scoring
- Research impact assessment
- Resource utilization analysis
- Batch Processing
- Automatic row batching (50 rows per batch)
- Progress tracking and monitoring
- Error handling and recovery
- Customizable processing goals
- Multi-column analysis support
- Job Management
- Real-time status monitoring
- Detailed progress tracking
- Error reporting and logging
- Job cancellation support
- Batch operation controls
Setup
Prerequisites
- Node.js and npm
- Conda (for environment management)
- Smartsheet API access token
Environment Setup
- Create a dedicated conda environment:
- Install Node.js dependencies:
- Install Python package:
- Build the TypeScript server:
Configuration
The server requires proper configuration in your MCP settings. You can use it with both Claude Desktop and Cline.
1. Get Your Smartsheet API Key
- Log in to Smartsheet
- Go to Account → Personal Settings → API Access
- Generate a new access token
2. Configure for Cline
The configuration path depends on your operating system:
macOS:
Windows:
Linux:
3. Configure for Claude Desktop (Optional)
The configuration path depends on your operating system:
macOS:
Windows:
Linux:
Starting the Server
The server will start automatically when Cline or Claude Desktop needs it. However, you can also start it manually for testing.
macOS/Linux:
Windows:
Verifying Installation
- The server should output "Smartsheet MCP server running on stdio" when started
- Test the connection using any MCP tool (e.g., get_column_map)
- Check the Python environment has the smartsheet package installed:Copy
Usage Examples
Getting Column Information (Read)
Writing Data (Create)
Updating Data (Update)
Deleting Data (Delete)
Healthcare Analytics Examples
Managing Columns
Type-Specific Comparisons
Complex Multi-Condition Examples
The bulk update operation provides:
- Operator Support:
equals
: Exact value matchingcontains
: Substring matchinggreaterThan
: Numeric/date comparisonlessThan
: Numeric/date comparisonisEmpty
: Null/empty checkisNotEmpty
: Present value check
- Type-Specific Features:
- TEXT_NUMBER: String/numeric comparisons
- DATE: ISO date parsing and comparison
- PICKLIST: Option validation
- CHECKBOX: Boolean handling
- Processing Options:
batchSize
: Control update batch size (default 500)lenientMode
: Continue on errors- Multiple rules per request
- Multiple updates per rule
- Result Tracking:
- Total rows attempted
- Success/failure counts
- Detailed error information
- Per-row failure details
Debugging
Since MCP servers communicate over stdio, debugging can be challenging. The server implements comprehensive error logging and provides detailed error messages through the MCP protocol.
Key debugging features:
- Error logging to stderr
- Detailed error messages in MCP responses
- Type validation at multiple levels
- Comprehensive operation result reporting
- Dependency analysis for column operations
- Formula reference tracking
Error Handling
The server implements a multi-layer error handling approach:
- MCP Layer
- Validates tool parameters
- Handles protocol-level errors
- Provides formatted error responses
- Manages timeouts and retries
- CLI Layer
- Validates command arguments
- Handles execution errors
- Formats error messages as JSON
- Validates column operations
- Operations Layer
- Handles Smartsheet API errors
- Validates data types and formats
- Provides detailed error context
- Manages column dependencies
- Validates formula references
- Ensures data integrity
Contributing
Contributions are welcome! Please ensure:
- TypeScript/Python code follows existing style
- New features include appropriate error handling
- Changes maintain backward compatibility
- Updates include appropriate documentation
- Column operations maintain data integrity
- Formula references are properly handled
You must be authenticated.
Provides seamless integration with Smartsheet, enabling automated operations on Smartsheet documents through a standardized interface that bridges AI-powered automation tools with Smartsheet's collaboration platform.