mcp-dbutils

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Integrations

  • Provides containerized deployment options with specific configurations for database connections from within Docker environments.

  • Enables connection to MySQL databases with support for secure connections, allowing SQL query execution, schema information retrieval, and performance analysis.

  • Provides a unified database access interface to PostgreSQL databases, allowing SQL query execution, table structure retrieval, and database analysis capabilities.

MCP Database Utilities

中文文档

Overview

MCP Database Utilities is a unified database access service that supports multiple database types (PostgreSQL, SQLite, and MySQL). Through its abstraction layer design, it provides a simple and unified database operation interface for MCP servers.

Features

  • Unified database access interface
  • Support for multiple database configurations
  • Secure read-only query execution
  • Table structure and schema information retrieval
  • Database tables listing via MCP tools
  • Intelligent connection management and resource cleanup
  • Debug mode support
  • SSL/TLS connection support for PostgreSQL and MySQL

Installation and Configuration

Installation Methods

Installing via Smithery

To install Database Utilities for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @donghao1393/mcp-dbutils --client claude

No installation required, run directly using uvx:

uvx mcp-dbutils --config /path/to/config.yaml

Add to Claude configuration:

"mcpServers": { "dbutils": { "command": "uvx", "args": [ "mcp-dbutils", "--config", "/path/to/config.yaml" ], "env": { "MCP_DEBUG": "1" // Optional: Enable debug mode } } }

Using pip

pip install mcp-dbutils

Add to Claude configuration:

"mcpServers": { "dbutils": { "command": "python", "args": [ "-m", "mcp_dbutils", "--config", "/path/to/config.yaml" ], "env": { "MCP_DEBUG": "1" // Optional: Enable debug mode } } }

Using Docker

docker run -i --rm \ -v /path/to/config.yaml:/app/config.yaml \ -v /path/to/sqlite.db:/app/sqlite.db \ # Optional: for SQLite database -e MCP_DEBUG=1 \ # Optional: Enable debug mode mcp/dbutils --config /app/config.yaml

Add to Claude configuration:

"mcpServers": { "dbutils": { "command": "docker", "args": [ "run", "-i", "--rm", "-v", "/path/to/config.yaml:/app/config.yaml", "-v", "/path/to/sqlite.db:/app/sqlite.db", // Optional: for SQLite database "mcp/dbutils", "--config", "/app/config.yaml" ], "env": { "MCP_DEBUG": "1" // Optional: Enable debug mode } } }

Note for Docker database connections:

  • For SQLite: Mount your database file using -v /path/to/sqlite.db:/app/sqlite.db
  • For PostgreSQL running on host:
    • On Mac/Windows: Use host.docker.internal as host in config
    • On Linux: Use 172.17.0.1 (docker0 IP) or run with --network="host"

Requirements

  • Python 3.10+
  • PostgreSQL (optional)
  • SQLite3 (optional)
  • MySQL (optional)

Configuration File

The project requires a YAML configuration file, specified via the --config parameter. Configuration examples:

connections: # SQLite configuration examples dev-db: type: sqlite path: /path/to/dev.db # Password is optional password: # PostgreSQL standard configuration test-db: type: postgres host: postgres.example.com port: 5432 dbname: test_db user: test_user password: test_pass # PostgreSQL URL configuration with SSL prod-db: type: postgres url: postgresql://postgres.example.com:5432/prod-db?sslmode=verify-full user: prod_user password: prod_pass # PostgreSQL full SSL configuration example secure-db: type: postgres host: secure-db.example.com port: 5432 dbname: secure_db user: secure_user password: secure_pass ssl: mode: verify-full # disable/require/verify-ca/verify-full cert: /path/to/client-cert.pem key: /path/to/client-key.pem root: /path/to/root.crt # MySQL standard configuration sandbox-mysql: type: mysql host: localhost port: 3306 database: sandbox_db user: sandbox_user password: sandbox_pass charset: utf8mb4 # MySQL URL configuration integration-mysql: type: mysql url: mysql://mysql.example.com:3306/integration_db?charset=utf8mb4 user: integration_user password: integration_pass # MySQL with SSL configuration secure-mysql: type: mysql host: secure-mysql.example.com port: 3306 database: secure_db user: secure_user password: secure_pass charset: utf8mb4 ssl: mode: verify_identity ca: /path/to/ca.pem cert: /path/to/client-cert.pem key: /path/to/client-key.pem

Database SSL Configuration Options:

PostgreSQL SSL Configuration:

  1. Using URL parameters:
    postgresql://host:port/dbname?sslmode=verify-full&sslcert=/path/to/cert.pem
  2. Using dedicated SSL configuration section:
    ssl: mode: verify-full # SSL verification mode cert: /path/to/cert.pem # Client certificate key: /path/to/key.pem # Client private key root: /path/to/root.crt # CA certificate

PostgreSQL SSL Modes:

  • disable: No SSL
  • require: Use SSL but no certificate verification
  • verify-ca: Verify server certificate is signed by trusted CA
  • verify-full: Verify server certificate and hostname match

MySQL SSL Configuration:

  1. Using URL parameters:
    mysql://host:port/dbname?ssl-mode=verify_identity&ssl-ca=/path/to/ca.pem
  2. Using dedicated SSL configuration section:
    ssl: mode: verify_identity # SSL verification mode ca: /path/to/ca.pem # CA certificate cert: /path/to/cert.pem # Client certificate key: /path/to/key.pem # Client private key

MySQL SSL Modes:

  • disabled: No SSL
  • preferred: Use SSL if available, but allow unencrypted connection
  • required: Always use SSL, but don't verify server certificate
  • verify_ca: Verify server certificate is signed by trusted CA
  • verify_identity: Verify server certificate and hostname match

SQLite Configuration Options:

  1. Basic configuration with path:
    type: sqlite path: /path/to/db.sqlite password: optional_password # Optional encryption
  2. Using URI parameters:
    type: sqlite path: /path/to/db.sqlite?mode=ro&cache=shared

Debug Mode

Set environment variable MCP_DEBUG=1 to enable debug mode for detailed logging output.

Architecture Design

Core Concept: Abstraction Layer

The abstraction layer design is the core architectural concept in MCP Database Utilities. Just like a universal remote control that works with different devices, users only need to know the basic operations without understanding the underlying complexities.

1. Simplified User Interaction

  • Users only need to know the database configuration name (e.g., "my_postgres")
  • No need to deal with connection parameters and implementation details
  • MCP server automatically handles database connections and queries

2. Unified Interface Design

  • DatabaseHandler abstract class defines unified operation interfaces
  • All specific database implementations (PostgreSQL/SQLite/MySQL) follow the same interface
  • Users interact with different databases in the same way

3. Configuration and Implementation Separation

  • Complex database configuration parameters are encapsulated in configuration files
  • Runtime access through simple database names
  • Easy management and modification of database configurations without affecting business code

System Components

  1. DatabaseServer
    • Core component of the MCP server
    • Handles resource and tool requests
    • Manages database connection lifecycle
  2. DatabaseHandler
    • Abstract base class defining unified interface
    • Includes get_tables(), get_schema(), execute_query(), etc.
    • Implemented by PostgreSQL, SQLite, and MySQL handlers
  3. Configuration System
    • YAML-based configuration file
    • Support for multiple database configurations
    • Type-safe configuration validation
  4. Error Handling and Logging
    • Unified error handling mechanism
    • Detailed logging output
    • Sensitive information masking

Usage Examples

Basic Query

# Access through connection name async with server.get_handler("my_postgres") as handler: # Execute SQL query result = await handler.execute_query("SELECT * FROM users")

View Table Structure

# Get all tables tables = await handler.get_tables() # Get specific table schema schema = await handler.get_schema("users")

Error Handling

try: async with server.get_handler("my_connection") as handler: result = await handler.execute_query("SELECT * FROM users") except ValueError as e: print(f"Configuration error: {e}") except Exception as e: print(f"Query error: {e}")

Security Notes

  • Supports SELECT queries only to protect database security
  • Automatically masks sensitive information (like passwords) in logs
  • Executes queries in read-only transactions

API Documentation

DatabaseServer

Core server class providing:

  • Resource list retrieval
  • Tool call handling (list_tables, query)
  • Database handler management

MCP Tools

dbutils-list-tables

Lists all tables in the specified database.

  • Parameters:
    • connection: Database connection name
  • Returns: Text content with a list of table names

dbutils-run-query

Executes a SQL query on the specified database.

  • Parameters:
    • connection: Database connection name
    • sql: SQL query to execute (SELECT only)
  • Returns: Query results in a formatted text

dbutils-get-stats

Get table statistics information.

  • Parameters:
    • connection: Database connection name
    • table: Table name
  • Returns: Statistics including row count, size, column stats

dbutils-list-constraints

List table constraints (primary key, foreign keys, etc).

  • Parameters:
    • connection: Database connection name
    • table: Table name
  • Returns: Detailed constraint information

dbutils-explain-query

Get query execution plan with cost estimates.

  • Parameters:
    • connection: Database connection name
    • sql: SQL query to explain
  • Returns: Formatted execution plan

dbutils-get-performance

Get database performance statistics.

  • Parameters:
    • connection: Database connection name
  • Returns: Detailed performance statistics including query times, query types, error rates, and resource usage

dbutils-analyze-query

Analyze a SQL query for performance and provide optimization suggestions.

  • Parameters:
    • connection: Database connection name
    • sql: SQL query to analyze
  • Returns: Query analysis with execution plan, timing information, and optimization suggestions

DatabaseHandler

Abstract base class defining interfaces:

  • get_tables(): Get table resource list
  • get_schema(): Get table structure
  • execute_query(): Execute SQL query
  • cleanup(): Resource cleanup

PostgreSQL Implementation

Provides PostgreSQL-specific features:

  • Remote connection support
  • Table description information
  • Constraint queries

SQLite Implementation

Provides SQLite-specific features:

  • File path handling
  • URI scheme support
  • Password protection support (optional)

MySQL Implementation

Provides MySQL-specific features:

  • Remote connection support
  • Character set configuration
  • SSL/TLS secure connection
  • URL and standard connection methods

Code Quality

Quality Gates

We use SonarCloud to maintain high code quality standards. All pull requests must pass the following quality gates:

  • Code Coverage: ≥ 80%
  • Code Quality:
    • No blocker or critical issues
    • Less than 10 major issues
    • Code duplication < 3%
  • Security:
    • No security vulnerabilities
    • No security hotspots

Automated Checks

Our CI/CD pipeline automatically performs:

  1. Full test suite execution
  2. Code coverage analysis
  3. SonarCloud static code analysis
  4. Quality gate validation

Pull requests that don't meet these standards will be automatically blocked from merging.

Code Style

We use Ruff for code style checking and formatting:

All code must follow our style guide:

  • Line length: 88 characters
  • Indentation: 4 spaces
  • Quotes: Double quotes
  • Naming: PEP8 conventions

For detailed guidelines, see STYLE_GUIDE.md.

Local Development

To check code quality locally:

  1. Run tests with coverage:
    pytest --cov=src/mcp_dbutils --cov-report=xml:coverage.xml tests/
  2. Use SonarLint in your IDE to catch issues early
  3. Review SonarCloud analysis results in PR comments
  4. Run Ruff for code style checking:
    # Install Ruff uv pip install ruff # Check code style ruff check . # Format code ruff format .
  5. Use pre-commit hooks for automatic checks:
    # Install pre-commit uv pip install pre-commit pre-commit install # Run all checks pre-commit run --all-files

SonarCloud AI Integration

We've implemented an AI-assisted workflow for fixing SonarCloud issues:

  1. Our CI/CD pipeline automatically extracts SonarCloud analysis results
  2. Results are formatted into both JSON and Markdown formats
  3. These reports can be downloaded using the provided Fish function
  4. The reports can then be provided to AI tools for analysis and fix suggestions

For detailed instructions, see SonarCloud AI Integration Guide.

# Load the function source scripts/sonar-ai-fix.fish # Download the latest SonarCloud analysis reports sonar-ai-fix

Contributing

Contributions are welcome! Here's how you can help:

  1. 🐛 Report bugs: Open an issue describing the bug and how to reproduce it
  2. 💡 Suggest features: Open an issue to propose new features
  3. 🛠️ Submit PRs: Fork the repo and create a pull request with your changes

Development Setup

  1. Clone the repository
  2. Create a virtual environment using uv venv
  3. Install dependencies with uv sync --all-extras
  4. Run tests with pytest

For detailed guidelines, see CONTRIBUTING.md

Acknowledgments

Star History