Xano MCP Server
by SarimSiddd
# Titan Memory MCP Server
A MCP server built with a three-tier memory architecture that handles storage as follows:
- **Short-term memory:** Holds the immediate conversational context in RAM.
- **Long-term memory:** Persists core patterns and knowledge over time. This state is saved automatically.
- **Meta memory:** Keeps higher-level abstractions that support context-aware responses.
[](https://smithery.ai/server/@henryhawke/mcp-titan)
## š¦ Installation
CHECK OUT docs/guides/how-to.md for more information on how to install and run the server.
## š Quick Start
1. Basic Installation (uses default memory path):
```bash
npx -y @smithery/cli@latest run @henryhawke/mcp-titan
```
2. With Custom Memory Path:
```bash
npx -y @smithery/cli@latest run @henryhawke/mcp-titan --config '{
"memoryPath": "/path/to/your/memory/directory"
}'
```
The server will automatically:
- Initialize in the specified directory (or default location)
- Maintain persistent memory state
- Save model weights and configuration
- Learn from interactions
## š Memory Storage
By default, the server stores memory files in:
- **Windows:** `%APPDATA%\.mcp-titan`
- **MacOS/Linux:** `~/.mcp-titan`
You can customize the storage location using the `memoryPath` configuration:
```bash
# Example with all configuration options
npx -y @smithery/cli@latest run @henryhawke/mcp-titan --config '{
"port": 3000,
"memoryPath": "/custom/path/to/memory",
"inputDim": 768,
"outputDim": 768
}'
```
The following files will be created in the memory directory:
- `memory.json`: Current memory state
- `model.json`: Model architecture
- `weights/`: Model weights directory
## Example usage
Usage Example:
```typescript
const model = new TitanMemoryModel({
memorySlots: 10000,
transformerLayers: 8,
});
// Store semantic memory
await model.storeMemory("User prefers dark mode and large text");
// Recall relevant memories
const results = await model.recallMemory("interface preferences", 3);
results.forEach((memory) => console.log(memory.arraySync()));
// Continuous learning
model.trainStep(
wrapTensor(currentInput),
wrapTensor(targetOutput),
model.getMemoryState()
);
```
## š¤ LLM Integration
To integrate with your LLM:
1. Copy the contents of `docs/llm-system-prompt.md` into your LLM's system prompt
2. The LLM will automatically:
- Use the memory system for every interaction
- Learn from conversations
- Provide context-aware responses
- Maintain persistent knowledge
## š Automatic Features
- Self-initialization
- WebSocket and stdio transport support
- Automatic state persistence
- Real-time memory updates
- Error recovery and reconnection
- Resource cleanup
## š§ Memory Architecture
Three-tier memory system:
- Short-term memory for immediate context
- Long-term memory for persistent patterns
- Meta memory for high-level abstractions
## š ļø Configuration Options
| Option | Description | Default |
| ------------ | ------------------------------ | -------------- |
| `port` | HTTP/WebSocket port | `0` (disabled) |
| `memoryPath` | Custom memory storage location | `~/.mcp-titan` |
| `inputDim` | Size of input vectors | `768` |
| `outputDim` | Size of memory state | `768` |
## š Technical Details
- Built with TensorFlow.js
- WebSocket and stdio transport support
- Automatic tensor cleanup
- Type-safe implementation
- Memory-efficient design
## š Security Considerations
When using a custom memory path:
- Ensure the directory has appropriate permissions
- Use a secure location not accessible to other users
- Consider encrypting sensitive memory data
- Backup memory files regularly
## š License
MIT License - feel free to use and modify!
## š Acknowledgments
- Built with [Model Context Protocol](https://modelcontextprotocol.io)
- Uses [TensorFlow.js](https://tensorflow.org/js)
- Inspired by [synthience/mcp-titan-cognitive-memory](https://github.com/synthience/mcp-titan-cognitive-memory/)