Skip to main content
Glama

ANSES Ciqual MCP Server

by zzgael

ANSES Ciqual MCP Server

An MCP (Model Context Protocol) server providing SQL access to the ANSES Ciqual French food composition database. Query nutritional data for over 3,000 foods with full-text search support.

ANSES Ciqual Database

Features

  • 🍎 Comprehensive Database: Access nutritional data for 3,185+ French foods
  • 🔍 SQL Interface: Query using standard SQL with full flexibility
  • 🌍 Bilingual Support: French and English food names
  • 🔤 Fuzzy Search: Built-in full-text search with typo tolerance
  • 📊 60+ Nutrients: Detailed composition including vitamins, minerals, macros, and more
  • 🔄 Auto-Updates: Automatically refreshes data yearly from ANSES (checks on startup)
  • 🔒 Read-Only: Safe queries with no risk of data modification
  • 💾 Lightweight: ~10MB SQLite database with efficient indexing

Installation

Via pip

pip install ciqual-mcp
uvx ciqual-mcp

From source

git clone https://github.com/zzgael/ciqual-mcp.git cd ciqual-mcp pip install -e .

MCP Client Configuration

Claude Desktop

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json

{ "mcpServers": { "ciqual": { "command": "uvx", "args": ["ciqual-mcp"] } } }

Zed

Add to your Zed settings:

{ "assistant": { "version": "2", "mcp": { "servers": { "ciqual": { "command": "uvx", "args": ["ciqual-mcp"] } } } } }

Cline (VSCode Extension)

Add to your VSCode settings (settings.json):

{ "cline.mcpServers": { "ciqual": { "command": "uvx", "args": ["ciqual-mcp"] } } }

Continue.dev

Add to your Continue config (~/.continue/config.json):

{ "mcpServers": [ { "name": "ciqual", "command": "uvx", "args": ["ciqual-mcp"] } ] }

Usage

As an MCP Server

The server implements the Model Context Protocol and exposes a single query function:

# Start the server standalone (for testing) ciqual-mcp

Direct Python Usage

from ciqual_mcp.data_loader import initialize_database # Initialize/update the database initialize_database() # Then use SQLite directly import sqlite3 conn = sqlite3.connect("~/.ciqual/ciqual.db") cursor = conn.execute("SELECT * FROM foods WHERE alim_nom_eng LIKE '%apple%'")

Database Schema

Tables

foods - Food items
  • alim_code (INTEGER, PK): Unique food identifier
  • alim_nom_fr (TEXT): French name
  • alim_nom_eng (TEXT): English name
  • alim_grp_code (TEXT): Food group code
nutrients - Nutrient definitions
  • const_code (INTEGER, PK): Unique nutrient identifier
  • const_nom_fr (TEXT): French name
  • const_nom_eng (TEXT): English name
  • unit (TEXT): Measurement unit (g/100g, mg/100g, etc.)
composition - Nutritional values
  • alim_code (INTEGER): Food identifier
  • const_code (INTEGER): Nutrient identifier
  • teneur (REAL): Value per 100g
  • code_confiance (TEXT): Confidence level (A/B/C/D)

Virtual table for fuzzy matching with French/English names

Common Nutrient Codes

CategoryCodeNutrientUnit
Energy327EnergykJ/100g
328Energykcal/100g
Macros25000Proteing/100g
31000Carbohydratesg/100g
40000Fatg/100g
34100Fiberg/100g
32000Sugarsg/100g
Minerals10110Sodiummg/100g
10200Calciummg/100g
10260Ironmg/100g
10190Potassiummg/100g
Vitamins55400Vitamin Cmg/100g
56400Vitamin Dµg/100g
51330Vitamin B12µg/100g

Example Queries

-- Find foods by name SELECT * FROM foods WHERE alim_nom_eng LIKE '%orange%'; -- Fuzzy search (handles typos) SELECT * FROM foods_fts WHERE foods_fts MATCH 'orang*';

Nutritional Queries

-- Get vitamin C content for oranges SELECT f.alim_nom_eng, c.teneur as vitamin_c_mg FROM foods f JOIN composition c ON f.alim_code = c.alim_code WHERE f.alim_nom_eng LIKE '%orange%' AND c.const_code = 55400; -- Find foods highest in protein SELECT f.alim_nom_eng, c.teneur as protein_g FROM foods f JOIN composition c ON f.alim_code = c.alim_code WHERE c.const_code = 25000 ORDER BY c.teneur DESC LIMIT 10; -- Compare macros for different foods SELECT f.alim_nom_eng as food, MAX(CASE WHEN c.const_code = 25000 THEN c.teneur END) as protein_g, MAX(CASE WHEN c.const_code = 31000 THEN c.teneur END) as carbs_g, MAX(CASE WHEN c.const_code = 40000 THEN c.teneur END) as fat_g, MAX(CASE WHEN c.const_code = 328 THEN c.teneur END) as calories_kcal FROM foods f JOIN composition c ON f.alim_code = c.alim_code WHERE f.alim_nom_eng IN ('Apple, raw', 'Banana, raw', 'Orange, raw') AND c.const_code IN (25000, 31000, 40000, 328) GROUP BY f.alim_code, f.alim_nom_eng;

Dietary Restrictions

-- Find low-sodium foods (<100mg/100g) SELECT f.alim_nom_eng, c.teneur as sodium_mg FROM foods f JOIN composition c ON f.alim_code = c.alim_code WHERE c.const_code = 10110 AND c.teneur < 100 ORDER BY c.teneur ASC; -- High-fiber foods (>5g/100g) SELECT f.alim_nom_eng, c.teneur as fiber_g FROM foods f JOIN composition c ON f.alim_code = c.alim_code WHERE c.const_code = 34100 AND c.teneur > 5 ORDER BY c.teneur DESC;

Data Source

Data is sourced from the official ANSES Ciqual database:

The database is automatically updated yearly when the server starts (data hasn't changed since 2020, so yearly updates are sufficient).

Requirements

  • Python 3.9 or higher
  • 50MB free disk space (for database)
  • Internet connection (for initial data download)

License

MIT License - See LICENSE file for details

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Development

Running Tests

# Install development dependencies pip install -e . pip install pytest pytest-asyncio # Run unit tests python -m pytest tests/test_server.py -v # Run functional tests (requires database) python -m pytest tests/test_functional.py -v

Building for Distribution

# Build the package python -m build # Upload to PyPI python -m twine upload dist/*

Troubleshooting

Database not initializing

  • Check internet connection
  • Ensure write permissions to ~/.ciqual/ directory
  • Try manual initialization: python -m ciqual_mcp.data_loader

XML parsing errors

  • The tool handles malformed XML automatically with recovery mode
  • If issues persist, delete ~/.ciqual/ciqual.db and restart

Credits

Developed by GPT Workbench team.

Data provided by ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail).

Citation

If you use this tool in your research, please cite:

@software{ciqual_mcp, title = {ANSES Ciqual MCP Server}, author = {GPT Workbench Team}, year = {2024}, url = {https://github.com/gpt-workbench/ciqual-mcp} }
-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Provides SQL access to the ANSES Ciqual French food composition database with nutritional data for over 3,000 foods. Supports full-text search and bilingual queries for comprehensive nutrition analysis.

  1. Features
    1. Installation
      1. Via pip
      2. Via uvx (recommended)
      3. From source
    2. MCP Client Configuration
      1. Claude Desktop
      2. Zed
      3. Cline (VSCode Extension)
      4. Continue.dev
    3. Usage
      1. As an MCP Server
      2. Direct Python Usage
    4. Database Schema
      1. Tables
      2. Common Nutrient Codes
    5. Example Queries
      1. Basic Search
      2. Nutritional Queries
      3. Dietary Restrictions
    6. Data Source
      1. Requirements
        1. License
          1. Contributing
            1. Development
              1. Running Tests
              2. Building for Distribution
            2. Troubleshooting
              1. Database not initializing
              2. XML parsing errors
            3. Credits
              1. Citation

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/zzgael/ciqual-mcp'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server