Skip to main content
Glama

Trading Analysis MCP Server

by zkyko
analyze_trade.py2.66 kB
import os from dotenv import load_dotenv from PIL import Image import pytesseract import json from datetime import datetime from openai import OpenAI # Load env vars load_dotenv() client = OpenAI( api_key=os.getenv("DeepSeek_api_key"), base_url=os.getenv("DeepSeek_api_base") ) # Step 1: Extract raw text from image def extract_text_from_image(image_path: str) -> str: img = Image.open(image_path) return pytesseract.image_to_string(img) # Step 2: Ask DeepSeek to summarize as structured JSON def summarize_trade_from_text(raw_text: str) -> str: prompt = f""" You are an intelligent trading assistant. A trader has uploaded a screenshot of their chart. The OCR-extracted text is below. Analyze it and output a JSON object with as much structure as possible. OCR TEXT: \"\"\" {raw_text} \"\"\" Extract and infer the following: - ticker (e.g., BTCUSD) - timeframe (e.g., 3min, 5min, etc.) - entry price - exit price - direction (long or short) - PnL (if visible) - date/time (if visible) - reason or annotations (if visible) Return only the JSON object. """ response = client.chat.completions.create( model="deepseek-chat", messages=[{"role": "user", "content": prompt}] ) return response.choices[0].message.content # Step 3: Format the JSON output def log_trade_json(json_string, log_path="logs/trade_log.jsonl"): os.makedirs(os.path.dirname(log_path), exist_ok=True) # 🔥 Strip Markdown code fences if json_string.strip().startswith("```json"): json_string = json_string.strip()[7:-3].strip() elif json_string.strip().startswith("```"): json_string = json_string.strip()[3:-3].strip() try: trade = json.loads(json_string) except json.JSONDecodeError as e: print("❌ Could not parse DeepSeek response as JSON.") print("🔍 Error:", e) return # Auto-tag with timestamp trade["logged_at"] = datetime.now().isoformat() with open(log_path, "a", encoding="utf-8") as f: f.write(json.dumps(trade) + "\n") print(f"\n📁 Trade logged to {log_path}") # Entrypoint if __name__ == "__main__": image_path = "trade_test.png" # Change to your image name ocr_text = extract_text_from_image(image_path) result_json = summarize_trade_from_text(ocr_text) print("\n🧠 DeepSeek JSON Output:\n", result_json) # ✅ Log it! log_trade_json(result_json) print("\n✅ Trade analysis complete!") print("You can now view the structured trade data in logs/trade_log.jsonl") # Note: Ensure you have the required packages installed: # pip install openai python-dotenv pytesseract pillow

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zkyko/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server