Skip to main content
Glama

Claude Context

by zilliztech
README.mdβ€’10.3 kB
# @zilliz/claude-context-core ![](../../assets/claude-context.png) The core indexing engine for Claude Context - a powerful tool for semantic search and analysis of codebases using vector embeddings and AI. [![npm version](https://img.shields.io/npm/v/@zilliz/claude-context-core.svg)](https://www.npmjs.com/package/@zilliz/claude-context-core) [![npm downloads](https://img.shields.io/npm/dm/@zilliz/claude-context-core.svg)](https://www.npmjs.com/package/@zilliz/claude-context-core) > πŸ“– **New to Claude Context?** Check out the [main project README](../../README.md) for an overview and quick start guide. ## Installation ```bash npm install @zilliz/claude-context-core ``` ### Prepare Environment Variables #### OpenAI API key See [OpenAI Documentation](https://platform.openai.com/docs/api-reference) for more details to get your API key. ```bash OPENAI_API_KEY=your-openai-api-key ``` #### Zilliz Cloud configuration Get a free Milvus vector database on Zilliz Cloud. Claude Context needs a vector database. You can [sign up](https://cloud.zilliz.com/signup?utm_source=github&utm_medium=referral&utm_campaign=2507-codecontext-readme) on Zilliz Cloud to get a free Serverless cluster. ![](../../assets/signup_and_create_cluster.jpeg) After creating your cluster, open your Zilliz Cloud console and copy both the **public endpoint** and your **API key**. These will be used as `your-zilliz-cloud-public-endpoint` and `your-zilliz-cloud-api-key` in the configuration examples. ![Zilliz Cloud Dashboard](../../assets/zilliz_cloud_dashboard.jpeg) Keep both values handy for the configuration steps below. If you need help creating your free vector database or finding these values, see the [Zilliz Cloud documentation](https://docs.zilliz.com/docs/create-cluster) for detailed instructions. ```bash MILVUS_ADDRESS=your-zilliz-cloud-public-endpoint MILVUS_TOKEN=your-zilliz-cloud-api-key ``` > πŸ’‘ **Tip**: For easier configuration management across different usage scenarios, consider using [global environment variables](../../docs/getting-started/environment-variables.md). ## Quick Start ```typescript import { Context, OpenAIEmbedding, MilvusVectorDatabase } from '@zilliz/claude-context-core'; // Initialize embedding provider const embedding = new OpenAIEmbedding({ apiKey: process.env.OPENAI_API_KEY || 'your-openai-api-key', model: 'text-embedding-3-small' }); // Initialize vector database const vectorDatabase = new MilvusVectorDatabase({ address: process.env.MILVUS_ADDRESS || 'localhost:19530', token: process.env.MILVUS_TOKEN || '' }); // Create context instance const context = new Context({ embedding, vectorDatabase }); // Index a codebase const stats = await context.indexCodebase('./my-project', (progress) => { console.log(`${progress.phase} - ${progress.percentage}%`); }); console.log(`Indexed ${stats.indexedFiles} files with ${stats.totalChunks} chunks`); // Search the codebase const results = await context.semanticSearch( './my-project', 'function that handles user authentication', 5 ); results.forEach(result => { console.log(`${result.relativePath}:${result.startLine}-${result.endLine}`); console.log(`Score: ${result.score}`); console.log(result.content); }); ``` ## Features - **Multi-language Support**: Index TypeScript, JavaScript, Python, Java, C++, and many other programming languages - **Semantic Search**: Find code using natural language queries powered by AI embeddings - **Flexible Architecture**: Pluggable embedding providers and vector databases - **Smart Chunking**: Intelligent code splitting that preserves context and structure - **Batch Processing**: Efficient processing of large codebases with progress tracking - **Pattern Matching**: Built-in ignore patterns for common build artifacts and dependencies - **Incremental File Synchronization**: Efficient change detection using Merkle trees to only re-index modified files ## Embedding Providers - **OpenAI Embeddings** (`text-embedding-3-small`, `text-embedding-3-large`, `text-embedding-ada-002`) - **VoyageAI Embeddings** - High-quality embeddings optimized for code (`voyage-code-3`, `voyage-3.5`, etc.) - **Gemini Embeddings** - Google's embedding models (`gemini-embedding-001`) - **Ollama Embeddings** - Local embedding models via Ollama ## Vector Database Support - **Milvus/Zilliz Cloud** - High-performance vector database ## Code Splitters - **AST Code Splitter** - AST-based code splitting with automatic fallback (default) - **LangChain Code Splitter** - Character-based code chunking ## Configuration ### ContextConfig ```typescript interface ContextConfig { embedding?: Embedding; // Embedding provider vectorDatabase?: VectorDatabase; // Vector database instance (required) codeSplitter?: Splitter; // Code splitting strategy supportedExtensions?: string[]; // File extensions to index ignorePatterns?: string[]; // Patterns to ignore customExtensions?: string[]; // Custom extensions from MCP customIgnorePatterns?: string[]; // Custom ignore patterns from MCP } ``` ### Supported File Extensions (Default) ```typescript [ // Programming languages '.ts', '.tsx', '.js', '.jsx', '.py', '.java', '.cpp', '.c', '.h', '.hpp', '.cs', '.go', '.rs', '.php', '.rb', '.swift', '.kt', '.scala', '.m', '.mm', // Text and markup files '.md', '.markdown', '.ipynb' ] ``` ### Default Ignore Patterns - Build and dependency directories: `node_modules/**`, `dist/**`, `build/**`, `out/**`, `target/**` - Version control: `.git/**`, `.svn/**`, `.hg/**` - IDE files: `.vscode/**`, `.idea/**`, `*.swp`, `*.swo` - Cache directories: `.cache/**`, `__pycache__/**`, `.pytest_cache/**`, `coverage/**` - Minified files: `*.min.js`, `*.min.css`, `*.bundle.js`, `*.map` - Log and temp files: `logs/**`, `tmp/**`, `temp/**`, `*.log` - Environment files: `.env`, `.env.*`, `*.local` ## API Reference ### Context #### Methods - `indexCodebase(path, progressCallback?, forceReindex?)` - Index an entire codebase - `reindexByChange(path, progressCallback?)` - Incrementally re-index only changed files - `semanticSearch(path, query, topK?, threshold?, filterExpr?)` - Search indexed code semantically - `hasIndex(path)` - Check if codebase is already indexed - `clearIndex(path, progressCallback?)` - Remove index for a codebase - `updateIgnorePatterns(patterns)` - Update ignore patterns - `addCustomIgnorePatterns(patterns)` - Add custom ignore patterns - `addCustomExtensions(extensions)` - Add custom file extensions - `updateEmbedding(embedding)` - Switch embedding provider - `updateVectorDatabase(vectorDB)` - Switch vector database - `updateSplitter(splitter)` - Switch code splitter ### Search Results ```typescript interface SemanticSearchResult { content: string; // Code content relativePath: string; // File path relative to codebase root startLine: number; // Starting line number endLine: number; // Ending line number language: string; // Programming language score: number; // Similarity score (0-1) } ``` ## Examples ### Using VoyageAI Embeddings ```typescript import { Context, MilvusVectorDatabase, VoyageAIEmbedding } from '@zilliz/claude-context-core'; // Initialize with VoyageAI embedding provider const embedding = new VoyageAIEmbedding({ apiKey: process.env.VOYAGEAI_API_KEY || 'your-voyageai-api-key', model: 'voyage-code-3' }); const vectorDatabase = new MilvusVectorDatabase({ address: process.env.MILVUS_ADDRESS || 'localhost:19530', token: process.env.MILVUS_TOKEN || '' }); const context = new Context({ embedding, vectorDatabase }); ``` ### Custom File Filtering ```typescript const context = new Context({ embedding, vectorDatabase, supportedExtensions: ['.ts', '.js', '.py', '.java'], ignorePatterns: [ 'node_modules/**', 'dist/**', '*.spec.ts', '*.test.js' ] }); ``` ## File Synchronization Architecture Claude Context implements an intelligent file synchronization system that efficiently tracks and processes only the files that have changed since the last indexing operation. This dramatically improves performance when working with large codebases. ![File Synchronization Architecture](../../assets/file_synchronizer.png) ### How It Works The file synchronization system uses a **Merkle tree-based approach** combined with SHA-256 file hashing to detect changes: #### 1. File Hashing - Each file in the codebase is hashed using SHA-256 - File hashes are computed based on file content, not metadata - Hashes are stored with relative file paths for consistency across different environments #### 2. Merkle Tree Construction - All file hashes are organized into a Merkle tree structure - The tree provides a single root hash that represents the entire codebase state - Any change to any file will cause the root hash to change #### 3. Snapshot Management - File synchronization state is persisted to `~/.context/merkle/` directory - Each codebase gets a unique snapshot file based on its absolute path hash - Snapshots contain both file hashes and serialized Merkle tree data #### 4. Change Detection Process 1. **Quick Check**: Compare current Merkle root hash with stored snapshot 2. **Detailed Analysis**: If root hashes differ, perform file-by-file comparison 3. **Change Classification**: Categorize changes into three types: - **Added**: New files that didn't exist before - **Modified**: Existing files with changed content - **Removed**: Files that were deleted from the codebase #### 5. Incremental Updates - Only process files that have actually changed - Update vector database entries only for modified chunks - Remove entries for deleted files - Add entries for new files ## Contributing This package is part of the Claude Context monorepo. Please see: - [Main Contributing Guide](../../CONTRIBUTING.md) - General contribution guidelines - [Core Package Contributing](CONTRIBUTING.md) - Specific development guide for this package ## Related Packages - **[@claude-context/mcp](../mcp)** - MCP server that uses this core engine - **[VSCode Extension](../vscode-extension)** - VSCode extension built on this core ## License MIT - See [LICENSE](../../LICENSE) for details

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zilliztech/claude-context'

If you have feedback or need assistance with the MCP directory API, please join our Discord server