Skip to main content
Glama

Claude Context

by zilliztech
analyze_and_plot_mcp_efficiency.pyβ€’11.3 kB
#!/usr/bin/env python3 """ Analyze retrieval results and create MCP efficiency chart using real data. This script loads data from the actual result directories and generates seaborn charts. """ import json import os import numpy as np import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from typing import Dict, List, Tuple def normalize_file_path(file_path: str) -> str: """Normalize file paths.""" if file_path.startswith("/"): file_path = file_path[1:] return file_path def calculate_metrics(hits: List[str], oracles: List[str]) -> Dict[str, float]: """Calculate precision, recall, and F1-score.""" if not hits and not oracles: return {"precision": 0.0, "recall": 0.0, "f1": 0.0} # Normalize file paths hits_set = set(normalize_file_path(f) for f in hits) oracles_set = set(normalize_file_path(f) for f in oracles) # Calculate intersection intersection = hits_set.intersection(oracles_set) # Calculate metrics precision = len(intersection) / len(hits_set) if hits_set else 0.0 recall = len(intersection) / len(oracles_set) if oracles_set else 0.0 f1 = ( 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0 ) return { "precision": precision, "recall": recall, "f1": f1, "num_hits": len(hits_set), "num_oracles": len(oracles_set), "num_correct": len(intersection), } def load_method_results(method_dirs: List[str], method_name: str) -> Dict: """Load and aggregate results from multiple runs of the same method.""" all_f1_scores = [] all_token_usage = [] all_tool_calls = [] successful_instances = set() print(f"\nLoading {method_name} method data from {len(method_dirs)} runs...") for run_idx, run_dir in enumerate(method_dirs): print(f" Processing run {run_idx + 1}: {run_dir}") if not os.path.exists(run_dir): print(f" Warning: Directory {run_dir} does not exist") continue run_success_count = 0 run_f1_scores = [] run_tokens = [] run_tools = [] for item in os.listdir(run_dir): instance_dir = os.path.join(run_dir, item) result_file = os.path.join(instance_dir, "result.json") if os.path.isdir(instance_dir) and os.path.exists(result_file): try: with open(result_file, "r") as f: data = json.load(f) # Calculate F1-score hits = data.get("hits", []) oracles = data.get("oracles", []) metrics = calculate_metrics(hits, oracles) # Extract other metrics tokens = data.get("token_usage", {}).get("total_tokens", 0) tools = data.get("tool_stats", {}).get("total_tool_calls", 0) # Store data run_f1_scores.append(metrics["f1"]) run_tokens.append(tokens) run_tools.append(tools) successful_instances.add(item) run_success_count += 1 except Exception as e: print(f" Warning: Failed to load {result_file}: {e}") continue print(f" Loaded {run_success_count} successful instances") # Add this run's data to overall collection all_f1_scores.extend(run_f1_scores) all_token_usage.extend(run_tokens) all_tool_calls.extend(run_tools) # Calculate aggregated statistics results = { "method_name": method_name, "total_runs": len(method_dirs), "successful_instances": len(successful_instances), "avg_f1": np.mean(all_f1_scores) if all_f1_scores else 0, "std_f1": np.std(all_f1_scores) if all_f1_scores else 0, "avg_tokens": np.mean(all_token_usage) if all_token_usage else 0, "std_tokens": np.std(all_token_usage) if all_token_usage else 0, "avg_tools": np.mean(all_tool_calls) if all_tool_calls else 0, "std_tools": np.std(all_tool_calls) if all_tool_calls else 0, } print(f" Aggregated results:") print(f" Avg F1-Score: {results['avg_f1']:.3f} Β± {results['std_f1']:.3f}") print(f" Avg Tokens: {results['avg_tokens']:.0f} Β± {results['std_tokens']:.0f}") print( f" Avg Tool Calls: {results['avg_tools']:.1f} Β± {results['std_tools']:.1f}" ) return results def create_efficiency_chart(both_results: Dict, grep_results: Dict): """Create the efficiency comparison chart using Seaborn.""" # Set the aesthetic style sns.set_style("whitegrid") sns.set_palette("husl") # Prepare data for plotting data = { "Method": [ "With claude-context MCP", "Baseline", "With claude-context MCP", "Baseline", ], "Metric": ["Token Usage", "Token Usage", "Tool Calls", "Tool Calls"], "Value": [ both_results["avg_tokens"] / 1000, # Convert to thousands grep_results["avg_tokens"] / 1000, both_results["avg_tools"], grep_results["avg_tools"], ], } df = pd.DataFrame(data) # Create figure with custom styling fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 7)) # Custom color palette colors = ["#3498db", "#e74c3c"] # Modern blue and red # Token Usage subplot token_data = df[df["Metric"] == "Token Usage"] sns.barplot( data=token_data, x="Method", y="Value", ax=ax1, palette=colors, alpha=0.8, edgecolor="white", linewidth=2, ) ax1.set_title("Token Usage", fontsize=18, fontweight="bold", pad=20) ax1.set_ylabel("Average Tokens (K)", fontsize=14, fontweight="bold") ax1.set_xlabel("") ax1.tick_params(axis="x", labelsize=12) ax1.tick_params(axis="y", labelsize=12) # Set y-axis range with some padding ax1.set_ylim(0, max(token_data["Value"]) * 1.15) # Add value labels for token usage token_values = [ both_results["avg_tokens"] / 1000, grep_results["avg_tokens"] / 1000, ] for i, val in enumerate(token_values): ax1.text( i, val + 2, f"{val:.1f}K", ha="center", va="bottom", fontweight="bold", fontsize=13, color=colors[i], ) # Add improvement annotation for tokens token_reduction = ( (grep_results["avg_tokens"] - both_results["avg_tokens"]) / grep_results["avg_tokens"] * 100 ) mid_height = max(token_values) * 0.8 ax1.annotate( f"-{token_reduction:.1f}%", xy=(0.5, mid_height), xycoords="data", ha="center", va="center", fontsize=16, fontweight="bold", bbox=dict( boxstyle="round,pad=0.5", facecolor="#2ecc71", alpha=0.8, edgecolor="white", linewidth=2, ), color="white", ) # Tool Calls subplot tool_data = df[df["Metric"] == "Tool Calls"] sns.barplot( data=tool_data, x="Method", y="Value", ax=ax2, palette=colors, alpha=0.8, edgecolor="white", linewidth=2, ) ax2.set_title("Tool Calls", fontsize=18, fontweight="bold", pad=20) ax2.set_ylabel("Average Number of Calls", fontsize=14, fontweight="bold") ax2.set_xlabel("") ax2.tick_params(axis="x", labelsize=12) ax2.tick_params(axis="y", labelsize=12) # Set y-axis range with some padding ax2.set_ylim(0, max(tool_data["Value"]) * 1.15) # Add value labels for tool calls tool_values = [both_results["avg_tools"], grep_results["avg_tools"]] for i, val in enumerate(tool_values): ax2.text( i, val + 0.2, f"{val:.1f}", ha="center", va="bottom", fontweight="bold", fontsize=13, color=colors[i], ) # Add improvement annotation for tool calls tool_reduction = ( (grep_results["avg_tools"] - both_results["avg_tools"]) / grep_results["avg_tools"] * 100 ) mid_height = max(tool_values) * 0.8 ax2.annotate( f"-{tool_reduction:.1f}%", xy=(0.5, mid_height), xycoords="data", ha="center", va="center", fontsize=16, fontweight="bold", bbox=dict( boxstyle="round,pad=0.5", facecolor="#2ecc71", alpha=0.8, edgecolor="white", linewidth=2, ), color="white", ) # Keep x-axis labels horizontal and add grid for ax in [ax1, ax2]: ax.tick_params(axis="x", rotation=0) ax.grid(True, alpha=0.3) # Adjust layout plt.tight_layout() # Save with high quality output_file = "mcp_efficiency_analysis_chart.png" plt.savefig( output_file, dpi=300, bbox_inches="tight", facecolor="white", edgecolor="none" ) plt.show() print(f"\nChart saved as: {output_file}") # Print summary print(f"\n{'='*80}") print(f"MCP EFFICIENCY ANALYSIS SUMMARY") print(f"{'='*80}") print(f"Method Comparison:") print(f" Both (MCP) vs Grep (Baseline)") print( f" Runs per method: {both_results['total_runs']} vs {grep_results['total_runs']}" ) print(f"\nF1-Score Comparison:") print(f" Both Method: {both_results['avg_f1']:.3f} Β± {both_results['std_f1']:.3f}") print(f" Grep Method: {grep_results['avg_f1']:.3f} Β± {grep_results['std_f1']:.3f}") f1_change = ( ( (both_results["avg_f1"] - grep_results["avg_f1"]) / grep_results["avg_f1"] * 100 ) if grep_results["avg_f1"] > 0 else 0 ) print(f" F1-Score change: {f1_change:+.1f}%") print(f"\nEfficiency Improvements:") print( f" Token usage reduction: {token_reduction:.1f}% (from {grep_results['avg_tokens']:.0f} to {both_results['avg_tokens']:.0f})" ) print( f" Tool calls reduction: {tool_reduction:.1f}% (from {grep_results['avg_tools']:.1f} to {both_results['avg_tools']:.1f})" ) print( f" Average token savings: {grep_results['avg_tokens'] - both_results['avg_tokens']:.0f} tokens per instance" ) def main(): """Main function to analyze and plot MCP efficiency.""" print("MCP Efficiency Analysis - Loading Data") print("=" * 60) # Define directories for each method both_dirs = [ "retrieval_results_both", "retrieval_results_both2", "retrieval_results_both3", ] grep_dirs = [ "retrieval_results_grep", "retrieval_results_grep2", "retrieval_results_grep3", ] # Load and analyze results both_results = load_method_results(both_dirs, "Both (with claude-context MCP)") grep_results = load_method_results(grep_dirs, "Grep (baseline)") # Create the efficiency chart create_efficiency_chart(both_results, grep_results) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zilliztech/claude-context'

If you have feedback or need assistance with the MCP directory API, please join our Discord server