# Nano Banana MCP Server - Implementation Plan
## Overview
This document outlines a phased implementation plan for building the production-ready Nano Banana MCP Server, progressing from the existing skeleton to a fully-featured, scalable solution.
## Current State Assessment
### Existing Assets ✅
- Complete FastMCP server skeleton (`docs/fastmcp-skeleton.md`)
- API design specification (`docs/mcp-server-design-01.md`)
- System architecture design (`SYSTEM_DESIGN.md`)
- API specification (`API_SPECIFICATION.md`)
- Component design (`COMPONENT_DESIGN.md`)
- Development guidance (`CLAUDE.md`)
### Missing Components 🔄
- Modular code structure
- Comprehensive error handling
- Input validation
- Logging and monitoring
- Testing framework
- Production deployment configuration
- Performance optimizations
## Implementation Phases
## Phase 1: Foundation & Refactoring (Week 1)
### Objectives
- Refactor monolithic skeleton into modular components
- Implement basic error handling and validation
- Set up development environment
### Tasks
#### 1.1 Project Structure Setup
```bash
# Initialize project with uv
uv init --python 3.11
# Add core dependencies
uv add fastmcp google-genai pillow python-dotenv
# Add development dependencies
uv add --dev ruff pytest pytest-asyncio pytest-cov mypy
# Create directory structure
mkdir -p config core services tools resources prompts utils tests
touch {config,core,services,tools,resources,prompts,utils,tests}/__init__.py
```
**Deliverables:**
- [ ] Complete directory structure following `COMPONENT_DESIGN.md`
- [ ] Base `__init__.py` files
- [ ] `pyproject.toml` configured with uv dependencies
- [ ] `ruff.toml` configuration for linting and formatting
#### 1.2 Configuration Management
**Files:** `config/settings.py`, `config/constants.py`
```python
# Priority order
1. Environment variables
2. .env file
3. Default values
```
**Deliverables:**
- [ ] `ServerConfig` class with environment variable loading
- [ ] `GeminiConfig` class with API-specific settings
- [ ] Configuration validation
- [ ] `.env.example` file
#### 1.3 Core Server Refactoring
**Files:** `core/server.py`, `core/exceptions.py`
**Tasks:**
- [ ] Extract `NanoBananaMCP` class from skeleton
- [ ] Implement component registration system
- [ ] Add custom exception classes
- [ ] Basic logging setup
#### 1.4 Service Layer Implementation
**Files:** `services/gemini_client.py`, `services/image_service.py`
**Tasks:**
- [ ] Create `GeminiClient` wrapper with error handling
- [ ] Implement `ImageService` with generation and editing
- [ ] Add input validation utilities
- [ ] Basic retry logic for API calls
**Acceptance Criteria:**
- Server starts successfully with modular structure
- Configuration loads from environment
- Basic image generation works
- Errors are properly handled and logged
## Phase 2: Core Functionality (Week 2)
### Objectives
- Implement all tools, resources, and prompts
- Add comprehensive input validation
- Implement structured logging
### Tasks
#### 2.1 Tool Implementation
**Files:** `tools/generate_image.py`, `tools/edit_image.py`, `tools/upload_file.py`
**Tasks:**
- [ ] Migrate and enhance `generate_image` tool
- [ ] Migrate and enhance `edit_image` tool
- [ ] Migrate and enhance `upload_file` tool
- [ ] Add parameter validation with Pydantic
- [ ] Implement proper error responses
#### 2.2 Resource Implementation
**Files:** `resources/file_metadata.py`, `resources/template_catalog.py`
**Tasks:**
- [ ] Implement file metadata resource
- [ ] Create enhanced template catalog with categories
- [ ] Add resource caching mechanism
- [ ] Error handling for missing resources
#### 2.3 Prompt Implementation
**Files:** `prompts/photography.py`, `prompts/design.py`, `prompts/editing.py`
**Tasks:**
- [ ] Organize prompts by category
- [ ] Implement all 6 prompt templates
- [ ] Add parameter validation
- [ ] Create prompt testing utilities
#### 2.4 Utility Enhancements
**Files:** `utils/image_utils.py`, `utils/validation_utils.py`, `utils/logging_utils.py`
**Tasks:**
- [ ] Image format validation and conversion
- [ ] Size optimization utilities
- [ ] Structured logging configuration
- [ ] Input sanitization utilities
**Acceptance Criteria:**
- All tools, resources, and prompts functional
- Comprehensive parameter validation
- Structured logging with proper levels
- Error messages are user-friendly
## Phase 3: Production Features (Week 3)
### Objectives
- Add production-ready features
- Implement monitoring and health checks
- Performance optimizations
### Tasks
#### 3.1 Advanced Error Handling
**Files:** `core/middleware.py`, `core/exceptions.py`
**Tasks:**
- [ ] Global exception handler middleware
- [ ] Circuit breaker for external API calls
- [ ] Retry logic with exponential backoff
- [ ] Rate limiting implementation
- [ ] Request timeout handling
#### 3.2 Health & Monitoring
**Files:** `core/health.py`, `utils/metrics.py`
**Tasks:**
- [ ] Health check endpoints (HTTP mode)
- [ ] Metrics collection (request counts, latency)
- [ ] Performance monitoring
- [ ] Resource usage tracking
- [ ] API quota monitoring
#### 3.3 Security Enhancements
**Files:** `core/security.py`, `utils/validation_utils.py`
**Tasks:**
- [ ] API key validation and rotation support
- [ ] Input sanitization for all endpoints
- [ ] Request size limits
- [ ] CORS configuration for HTTP mode
- [ ] Security headers implementation
#### 3.4 Performance Optimizations
**Files:** `services/cache_service.py`, `utils/performance.py`
**Tasks:**
- [ ] Template caching system
- [ ] Response compression
- [ ] Connection pooling for API calls
- [ ] Memory usage optimization
- [ ] Async processing where possible
**Acceptance Criteria:**
- Server handles high load gracefully
- Health checks provide detailed status
- Security best practices implemented
- Performance metrics are collected
## Phase 4: Testing & Quality Assurance (Week 4)
### Objectives
- Comprehensive test coverage
- Integration testing
- Performance testing
### Tasks
#### 4.1 Unit Testing
**Files:** `tests/test_*.py`
**Test Categories:**
- [ ] Configuration loading (`test_config.py`)
- [ ] Tool functionality (`test_tools.py`)
- [ ] Service layer (`test_services.py`)
- [ ] Resource access (`test_resources.py`)
- [ ] Prompt generation (`test_prompts.py`)
- [ ] Utility functions (`test_utils.py`)
**Coverage Target:** 90%+
#### 4.2 Integration Testing
**Files:** `tests/integration/test_*.py`
**Test Categories:**
- [ ] End-to-end tool execution
- [ ] Gemini API integration
- [ ] File upload/download cycles
- [ ] Error handling scenarios
- [ ] Multi-step workflows
#### 4.3 Performance Testing
**Files:** `tests/performance/test_*.py`
**Test Categories:**
- [ ] Concurrent request handling
- [ ] Memory usage profiling
- [ ] Large file processing
- [ ] API rate limit testing
- [ ] Stress testing
#### 4.4 Quality Assurance
**Tools:** `pytest`, `coverage`, `mypy`, `black`, `flake8`
**Tasks:**
- [ ] Set up CI/CD pipeline
- [ ] Code quality checks
- [ ] Type checking
- [ ] Documentation generation
- [ ] Security scanning
**Acceptance Criteria:**
- 90%+ test coverage
- All integration tests pass
- Performance benchmarks met
- Code quality standards satisfied
## Phase 5: Deployment & Documentation (Week 5)
### Objectives
- FastMCP native deployment setup
- Comprehensive documentation
- User guides and examples
### Tasks
#### 5.1 FastMCP Deployment Setup
**Files:** `systemd/`, `scripts/`
**Tasks:**
- [ ] FastMCP native deployment configuration
- [ ] Systemd service files for production
- [ ] Process management scripts
- [ ] Environment configuration templates
- [ ] Health monitoring setup
#### 5.2 Documentation
**Files:** `docs/`
**Documentation Types:**
- [ ] API documentation (OpenAPI spec)
- [ ] User guide with examples
- [ ] Developer setup guide
- [ ] Deployment guide
- [ ] Troubleshooting guide
- [ ] Performance tuning guide
#### 5.3 Examples & Tutorials
**Files:** `examples/`
**Examples:**
- [ ] Basic image generation
- [ ] Advanced prompt engineering
- [ ] FastMCP deployment examples
- [ ] Integration with popular tools
- [ ] Error handling patterns
**Acceptance Criteria:**
- Server deploys successfully with FastMCP native deployment
- Documentation is comprehensive and accurate
- Examples work as documented
- Production readiness checklist complete
## Development Guidelines
### Code Quality Standards
#### Style & Formatting (Using Ruff)
```bash
# Code formatting and linting with ruff
uv run ruff format src/ tests/
uv run ruff check src/ tests/
# Type checking
uv run mypy src/
# Testing
uv run pytest tests/ --cov=src/ --cov-report=html
```
#### Commit Standards
```
feat: add image generation caching
fix: handle API timeout errors
docs: update deployment guide
test: add integration tests for file upload
refactor: extract validation utilities
```
### Development Workflow
#### 1. Feature Development
```bash
git checkout -b feature/image-caching
# Install dependencies
uv sync
# Develop feature with quality checks
uv run ruff format .
uv run ruff check .
uv run mypy src/
# Write tests
uv run pytest tests/ --cov=src/
# Update documentation
git commit -m "feat: implement image result caching"
```
#### 2. Code Review Checklist
- [ ] Functionality works as specified
- [ ] Tests written and passing
- [ ] Ruff formatting and linting pass
- [ ] Type checking with mypy passes
- [ ] Error handling implemented
- [ ] Documentation updated
- [ ] Performance impact assessed
- [ ] Security considerations reviewed
#### 3. Integration Process
```bash
# Run full test suite
uv run pytest tests/ --cov=src/ --cov-report=html
# Check code quality with ruff
uv run ruff check .
uv run ruff format --check .
uv run mypy src/
# Run server integration test
uv run python server.py &
# Basic smoke test
curl -X POST http://localhost:8000/health
kill %1
# Merge to main
git checkout main && git merge feature/image-caching
```
## Resource Planning
### Team Requirements
- **Backend Developer**: Python/FastAPI expertise
- **DevOps Engineer**: Docker/Kubernetes deployment
- **QA Engineer**: Testing automation
- **Technical Writer**: Documentation
### Infrastructure Requirements
- **Development**: Local Docker environment
- **Testing**: CI/CD pipeline (GitHub Actions)
- **Production**: Container orchestration platform
- **Monitoring**: Logging and metrics infrastructure
### Timeline Summary
| Phase | Duration | Key Deliverables |
|-------|----------|------------------|
| Phase 1 | Week 1 | Modular structure, basic functionality |
| Phase 2 | Week 2 | Complete feature set, validation |
| Phase 3 | Week 3 | Production features, monitoring |
| Phase 4 | Week 4 | Testing, quality assurance |
| Phase 5 | Week 5 | Deployment, documentation |
**Total Duration:** 5 weeks
**Total Effort:** ~200 hours
## Success Metrics
### Functionality Metrics
- ✅ All tools, resources, and prompts working
- ✅ 100% API specification compliance
- ✅ Error handling for all edge cases
### Quality Metrics
- ✅ 90%+ test coverage
- ✅ Zero security vulnerabilities
- ✅ All code quality checks passing
### Performance Metrics
- ✅ <5s average image generation time
- ✅ Support for 20+ concurrent users
- ✅ <100MB memory usage per instance
### Production Readiness
- ✅ Automated deployment pipeline
- ✅ Comprehensive monitoring
- ✅ Complete documentation
## Risk Mitigation
### Technical Risks
1. **Gemini API Changes**: Monitor API documentation, implement version detection
2. **Performance Issues**: Early performance testing, profiling tools
3. **Security Vulnerabilities**: Regular security scanning, dependency updates
### Schedule Risks
1. **Scope Creep**: Strict phase definitions, change control
2. **Dependencies**: Parallel development where possible
3. **Integration Issues**: Early integration testing
### Quality Risks
1. **Test Coverage**: Automated coverage reporting, quality gates
2. **Documentation Gaps**: Documentation reviews, user feedback
3. **Production Issues**: Staged deployment, rollback procedures
This implementation plan provides a structured approach to building the Nano Banana MCP Server from the existing skeleton to a production-ready system, with clear milestones, deliverables, and success criteria.