Skip to main content
Glama

Delia

MCP server that adds persistent learning and semantic code intelligence to AI coding assistants.

What It Does

  • Playbooks - Per-project patterns learned over time, indexed in ChromaDB for semantic retrieval

  • Memories - Persistent knowledge (markdown), searchable via embeddings

  • Profiles - Framework-specific guidance, semantically matched to your task

  • Code Index - Codebase summaries and symbols indexed for intelligent navigation

  • LSP Tools - Semantic code navigation: find references, go to definition, rename symbols

  • Learning Loop - Extracts insights from completed tasks and updates playbooks

All knowledge is stored in .delia/chroma/ for fast semantic search.

Full Documentation | Quick Start | Tool Reference

Quick Start

# 1. Clone and install git clone https://github.com/zbrdc/delia.git cd delia uv sync # 2. Start HTTP server (recommended for multi-project) uv run delia run -t http --port 8765 # 3. Initialize your project (from project directory) cd ~/your-project uv run --directory ~/git/delia delia init-project

Complete Setup Guide

Step 1: Install Delia

git clone https://github.com/zbrdc/delia.git cd delia uv sync

Step 2: Configure MCP Clients

Auto-detect and configure all supported AI clients:

uv run delia install

Or install to a specific client:

uv run delia install claude # Claude Code uv run delia install cursor # Cursor uv run delia install vscode # VS Code

List available clients:

uv run delia install --list

Step 3: Start the Server

Option A: HTTP Transport (Recommended)

Best for multi-project setups. One server handles all projects.

uv run delia run -t http --port 8765

Add to each project's .mcp.json:

{ "mcpServers": { "delia": { "type": "http", "url": "http://localhost:8765/mcp" } } }

Note: HTTP servers won't appear in Claude Code's /mcp list, but tools work normally.

Option B: stdio Transport

Per-project server, managed by the AI client. Shows in /mcp list.

{ "mcpServers": { "delia": { "command": "uv", "args": ["--directory", "/path/to/delia", "run", "delia", "serve"] } } }

Step 4: Initialize Your Project

Option A: Via MCP (Recommended)

Let the AI agent initialize the project - it handles summarization:

# In Claude Code or Cursor, just ask: "Initialize this project with Delia" # Or use the MCP tool directly: project(action="init", path="/path/to/your-project")

Option B: Via CLI (requires Ollama)

If you have Ollama running locally with a model:

cd ~/your-project uv run --directory /path/to/delia delia init-project

This creates .delia/ with playbooks tailored to your tech stack.

Step 5: Verify Setup

uv run delia doctor

Usage

The AI assistant calls these tools:

auto_context("implement user auth") # Load relevant patterns [work on the task] complete_task(success=True, bullets_applied=["id1"]) # Record feedback

Project Structure

your-project/ ├── .delia/ │ ├── chroma/ # Vector database (primary storage) │ ├── playbooks/ # Learned patterns (JSON, indexed to ChromaDB) │ ├── memories/ # Persistent knowledge (Markdown, indexed to ChromaDB) │ └── profiles/ # Framework guides (Markdown, indexed to ChromaDB) └── CLAUDE.md # Instructions for AI assistants

CLI Commands

delia run -t http # Start HTTP server (MCP) delia serve # Start stdio server (MCP) delia doctor # Health check delia init-project # Initialize project (requires Ollama) delia chat # Interactive chat (requires Ollama) delia agent "task" # Single-shot task (requires Ollama)

Configuration

Create ~/.delia/.env:

DELIA_VOYAGE_API_KEY=your-key-here

Fallback options (no API key needed):

  • Ollama - Run ollama pull mxbai-embed-large

  • Sentence Transformers - CPU fallback, works offline

LLM Backends (for CLI features)

For init-project, chat, agent commands, configure backends in ~/.delia/settings.json:

{ "backends": [{ "name": "ollama-local", "url": "http://localhost:11434", "model": "llama3.2" }] }

Requirements

  • Python 3.11+

  • uv (package manager)

  • Ollama (optional, for CLI LLM features - not needed if using MCP only)

License

GPL-3.0

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zbrdc/delia'

If you have feedback or need assistance with the MCP directory API, please join our Discord server