Skip to main content
Glama
test_core.py2.9 kB
from __future__ import annotations import math from unittest import mock from ctrltest_mcp.core import evaluate_control from ctrltest_mcp.models import ( AdaptiveCPGConfig, ControlAnalysisOutput, ControlAnalysisInput, ControlPlant, ControlSimulation, GustDetectorConfig, MoERouterConfig, PIDGains, ) def test_evaluate_control_returns_metrics() -> None: """Smoke-test the default PID analysis so learners can see the basics.""" request = ControlAnalysisInput( plant=ControlPlant( natural_frequency_hz=5.0, damping_ratio=0.6, settling_tolerance_rad=0.02, trim_setpoint=0.0, ), gains=PIDGains(kp=0.8, ki=0.05, kd=0.02), simulation=ControlSimulation(duration_s=2.0, sample_points=200), setpoint=0.3, gust_detector=GustDetectorConfig(), adaptive_cpg=AdaptiveCPGConfig(), moe_router=MoERouterConfig(), ) output = evaluate_control(request) assert math.isfinite(output.overshoot) assert output.settling_time <= request.simulation.duration_s assert output.extra_metrics is None assert output.multi_modal_score is None assert output.metadata == {"solver": "analytic"} def test_evaluate_control_with_extra_metrics() -> None: """Show how diffSPH/Foam-Agent outputs can be injected into the report.""" request = ControlAnalysisInput( plant=ControlPlant( natural_frequency_hz=4.0, damping_ratio=0.5, settling_tolerance_rad=0.02, trim_setpoint=0.0, ), gains=PIDGains(kp=1.0, ki=0.2, kd=0.1), diffsph_metrics={"force_gradient_norm": 2.0}, foam_metrics={"lift_drag_ratio": 0.5}, ) output = evaluate_control(request) assert output.extra_metrics is not None assert output.multi_modal_score is not None def test_evaluate_control_uses_pteracontrols_when_available() -> None: request = ControlAnalysisInput( plant=ControlPlant(natural_frequency_hz=3.5, damping_ratio=0.4), gains=PIDGains(kp=0.6, ki=0.1, kd=0.05), ) high_fidelity = ControlAnalysisOutput( overshoot=0.01, ise=0.02, settling_time=1.0, gust_detection_latency_ms=0.9, gust_detection_bandwidth_hz=1200.0, gust_rejection_pct=0.6, cpg_energy_baseline_j=12.0, cpg_energy_consumed_j=6.0, cpg_energy_reduction_pct=0.5, lyapunov_margin=0.1, moe_switch_penalty=0.2, moe_latency_ms=10.0, moe_energy_j=5.0, metadata={"solver": "pteracontrols"}, ) with mock.patch("ctrltest_mcp.core.is_available", return_value=True), mock.patch( "ctrltest_mcp.core.run_high_fidelity", return_value=high_fidelity ): output = evaluate_control(request) assert output.metadata == {"solver": "pteracontrols"}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yevheniikravchuk/ctrltest-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server