from __future__ import annotations
import math
from unittest import mock
from ctrltest_mcp.core import evaluate_control
from ctrltest_mcp.models import (
AdaptiveCPGConfig,
ControlAnalysisOutput,
ControlAnalysisInput,
ControlPlant,
ControlSimulation,
GustDetectorConfig,
MoERouterConfig,
PIDGains,
)
def test_evaluate_control_returns_metrics() -> None:
"""Smoke-test the default PID analysis so learners can see the basics."""
request = ControlAnalysisInput(
plant=ControlPlant(
natural_frequency_hz=5.0,
damping_ratio=0.6,
settling_tolerance_rad=0.02,
trim_setpoint=0.0,
),
gains=PIDGains(kp=0.8, ki=0.05, kd=0.02),
simulation=ControlSimulation(duration_s=2.0, sample_points=200),
setpoint=0.3,
gust_detector=GustDetectorConfig(),
adaptive_cpg=AdaptiveCPGConfig(),
moe_router=MoERouterConfig(),
)
output = evaluate_control(request)
assert math.isfinite(output.overshoot)
assert output.settling_time <= request.simulation.duration_s
assert output.extra_metrics is None
assert output.multi_modal_score is None
assert output.metadata == {"solver": "analytic"}
def test_evaluate_control_with_extra_metrics() -> None:
"""Show how diffSPH/Foam-Agent outputs can be injected into the report."""
request = ControlAnalysisInput(
plant=ControlPlant(
natural_frequency_hz=4.0,
damping_ratio=0.5,
settling_tolerance_rad=0.02,
trim_setpoint=0.0,
),
gains=PIDGains(kp=1.0, ki=0.2, kd=0.1),
diffsph_metrics={"force_gradient_norm": 2.0},
foam_metrics={"lift_drag_ratio": 0.5},
)
output = evaluate_control(request)
assert output.extra_metrics is not None
assert output.multi_modal_score is not None
def test_evaluate_control_uses_pteracontrols_when_available() -> None:
request = ControlAnalysisInput(
plant=ControlPlant(natural_frequency_hz=3.5, damping_ratio=0.4),
gains=PIDGains(kp=0.6, ki=0.1, kd=0.05),
)
high_fidelity = ControlAnalysisOutput(
overshoot=0.01,
ise=0.02,
settling_time=1.0,
gust_detection_latency_ms=0.9,
gust_detection_bandwidth_hz=1200.0,
gust_rejection_pct=0.6,
cpg_energy_baseline_j=12.0,
cpg_energy_consumed_j=6.0,
cpg_energy_reduction_pct=0.5,
lyapunov_margin=0.1,
moe_switch_penalty=0.2,
moe_latency_ms=10.0,
moe_energy_j=5.0,
metadata={"solver": "pteracontrols"},
)
with mock.patch("ctrltest_mcp.core.is_available", return_value=True), mock.patch(
"ctrltest_mcp.core.run_high_fidelity", return_value=high_fidelity
):
output = evaluate_control(request)
assert output.metadata == {"solver": "pteracontrols"}