Skip to main content
Glama

MCP Server for OpenMetadata

by yangkyeongmo
mlmodels.py6.37 kB
"""ML Model entity management for OpenMetadata. This module provides comprehensive ML model management operations including CRUD operations, field filtering, pagination support, and model training metadata. ML Models are algorithms trained on data to find patterns or make predictions. """ from typing import Any, Callable, Dict, List, Optional, Union import mcp.types as types from src.openmetadata.openmetadata_client import get_client def get_all_functions() -> List[tuple[Callable, str, str]]: """Return list of (function, name, description) tuples for registration. Returns: List of tuples containing function reference, tool name, and description """ return [ (list_ml_models, "list_ml_models", "List ML models from OpenMetadata with pagination and filtering"), (get_ml_model, "get_ml_model", "Get details of a specific ML model by ID"), (get_ml_model_by_name, "get_ml_model_by_name", "Get details of a specific ML model by fully qualified name"), (create_ml_model, "create_ml_model", "Create a new ML model in OpenMetadata"), (update_ml_model, "update_ml_model", "Update an existing ML model in OpenMetadata"), (delete_ml_model, "delete_ml_model", "Delete an ML model from OpenMetadata"), ] async def list_ml_models( limit: int = 10, offset: int = 0, fields: Optional[str] = None, service: Optional[str] = None, include_deleted: bool = False, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """List ML models with pagination. Args: limit: Maximum number of ML models to return (1 to 1000000) offset: Number of ML models to skip fields: Comma-separated list of fields to include service: Filter ML models by service name include_deleted: Whether to include deleted ML models Returns: List of MCP content types containing ML model list and metadata """ client = get_client() params = {"limit": min(max(1, limit), 1000000), "offset": max(0, offset)} if fields: params["fields"] = fields if service: params["service"] = service if include_deleted: params["include"] = "all" result = client.get("mlmodels", params=params) # Add UI URL for web interface integration if "data" in result: for model in result["data"]: model_fqn = model.get("fullyQualifiedName", "") if model_fqn: model["ui_url"] = f"{client.host}/mlmodel/{model_fqn}" return [types.TextContent(type="text", text=str(result))] async def get_ml_model( model_id: str, fields: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """Get details of a specific ML model by ID. Args: model_id: ID of the ML model fields: Comma-separated list of fields to include Returns: List of MCP content types containing ML model details """ client = get_client() params = {} if fields: params["fields"] = fields result = client.get(f"mlmodels/{model_id}", params=params) # Add UI URL for web interface integration model_fqn = result.get("fullyQualifiedName", "") if model_fqn: result["ui_url"] = f"{client.host}/mlmodel/{model_fqn}" return [types.TextContent(type="text", text=str(result))] async def get_ml_model_by_name( fqn: str, fields: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """Get details of a specific ML model by fully qualified name. Args: fqn: Fully qualified name of the ML model fields: Comma-separated list of fields to include Returns: List of MCP content types containing ML model details """ client = get_client() params = {} if fields: params["fields"] = fields result = client.get(f"mlmodels/name/{fqn}", params=params) # Add UI URL for web interface integration model_fqn = result.get("fullyQualifiedName", "") if model_fqn: result["ui_url"] = f"{client.host}/mlmodel/{model_fqn}" return [types.TextContent(type="text", text=str(result))] async def create_ml_model( model_data: Dict[str, Any], ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """Create a new ML model. Args: model_data: ML model data including name, description, algorithm, features, etc. Returns: List of MCP content types containing created ML model details """ client = get_client() result = client.post("mlmodels", json_data=model_data) # Add UI URL for web interface integration model_fqn = result.get("fullyQualifiedName", "") if model_fqn: result["ui_url"] = f"{client.host}/mlmodel/{model_fqn}" return [types.TextContent(type="text", text=str(result))] async def update_ml_model( model_id: str, model_data: Dict[str, Any], ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """Update an existing ML model. Args: model_id: ID of the ML model to update model_data: Updated ML model data Returns: List of MCP content types containing updated ML model details """ client = get_client() result = client.put(f"mlmodels/{model_id}", json_data=model_data) # Add UI URL for web interface integration model_fqn = result.get("fullyQualifiedName", "") if model_fqn: result["ui_url"] = f"{client.host}/mlmodel/{model_fqn}" return [types.TextContent(type="text", text=str(result))] async def delete_ml_model( model_id: str, hard_delete: bool = False, recursive: bool = False, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """Delete an ML model. Args: model_id: ID of the ML model to delete hard_delete: Whether to perform a hard delete recursive: Whether to recursively delete children Returns: List of MCP content types confirming deletion """ client = get_client() params = {"hardDelete": hard_delete, "recursive": recursive} client.delete(f"mlmodels/{model_id}", params=params) return [types.TextContent(type="text", text=f"ML model {model_id} deleted successfully")]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-openmetadata'

If you have feedback or need assistance with the MCP directory API, please join our Discord server