README.md•17.9 kB
[](https://mseep.ai/app/yangkyeongmo-mcp-server-apache-airflow)
# mcp-server-apache-airflow
[](https://smithery.ai/server/@yangkyeongmo/mcp-server-apache-airflow)
A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.
<a href="https://glama.ai/mcp/servers/e99b6vx9lw">
<img width="380" height="200" src="https://glama.ai/mcp/servers/e99b6vx9lw/badge" alt="Server for Apache Airflow MCP server" />
</a>
## About
This project implements a [Model Context Protocol](https://modelcontextprotocol.io/introduction) server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.
## Feature Implementation Status
| Feature | API Path | Status |
| -------------------------------- | --------------------------------------------------------------------------------------------- | ------ |
| **DAG Management** | | |
| List DAGs | `/api/v1/dags` | ✅ |
| Get DAG Details | `/api/v1/dags/{dag_id}` | ✅ |
| Pause DAG | `/api/v1/dags/{dag_id}` | ✅ |
| Unpause DAG | `/api/v1/dags/{dag_id}` | ✅ |
| Update DAG | `/api/v1/dags/{dag_id}` | ✅ |
| Delete DAG | `/api/v1/dags/{dag_id}` | ✅ |
| Get DAG Source | `/api/v1/dagSources/{file_token}` | ✅ |
| Patch Multiple DAGs | `/api/v1/dags` | ✅ |
| Reparse DAG File | `/api/v1/dagSources/{file_token}/reparse` | ✅ |
| **DAG Runs** | | |
| List DAG Runs | `/api/v1/dags/{dag_id}/dagRuns` | ✅ |
| Create DAG Run | `/api/v1/dags/{dag_id}/dagRuns` | ✅ |
| Get DAG Run Details | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}` | ✅ |
| Update DAG Run | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}` | ✅ |
| Delete DAG Run | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}` | ✅ |
| Get DAG Runs Batch | `/api/v1/dags/~/dagRuns/list` | ✅ |
| Clear DAG Run | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear` | ✅ |
| Set DAG Run Note | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote` | ✅ |
| Get Upstream Dataset Events | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents` | ✅ |
| **Tasks** | | |
| List DAG Tasks | `/api/v1/dags/{dag_id}/tasks` | ✅ |
| Get Task Details | `/api/v1/dags/{dag_id}/tasks/{task_id}` | ✅ |
| Get Task Instance | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}` | ✅ |
| List Task Instances | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances` | ✅ |
| Update Task Instance | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}` | ✅ |
| Clear Task Instances | `/api/v1/dags/{dag_id}/clearTaskInstances` | ✅ |
| Set Task Instances State | `/api/v1/dags/{dag_id}/updateTaskInstancesState` | ✅ |
| List Task Instance Tries | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/tries` | ✅ |
| **Variables** | | |
| List Variables | `/api/v1/variables` | ✅ |
| Create Variable | `/api/v1/variables` | ✅ |
| Get Variable | `/api/v1/variables/{variable_key}` | ✅ |
| Update Variable | `/api/v1/variables/{variable_key}` | ✅ |
| Delete Variable | `/api/v1/variables/{variable_key}` | ✅ |
| **Connections** | | |
| List Connections | `/api/v1/connections` | ✅ |
| Create Connection | `/api/v1/connections` | ✅ |
| Get Connection | `/api/v1/connections/{connection_id}` | ✅ |
| Update Connection | `/api/v1/connections/{connection_id}` | ✅ |
| Delete Connection | `/api/v1/connections/{connection_id}` | ✅ |
| Test Connection | `/api/v1/connections/test` | ✅ |
| **Pools** | | |
| List Pools | `/api/v1/pools` | ✅ |
| Create Pool | `/api/v1/pools` | ✅ |
| Get Pool | `/api/v1/pools/{pool_name}` | ✅ |
| Update Pool | `/api/v1/pools/{pool_name}` | ✅ |
| Delete Pool | `/api/v1/pools/{pool_name}` | ✅ |
| **XComs** | | |
| List XComs | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries` | ✅ |
| Get XCom Entry | `/api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key}` | ✅ |
| **Datasets** | | |
| List Datasets | `/api/v1/datasets` | ✅ |
| Get Dataset | `/api/v1/datasets/{uri}` | ✅ |
| Get Dataset Events | `/api/v1/datasetEvents` | ✅ |
| Create Dataset Event | `/api/v1/datasetEvents` | ✅ |
| Get DAG Dataset Queued Event | `/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}` | ✅ |
| Get DAG Dataset Queued Events | `/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents` | ✅ |
| Delete DAG Dataset Queued Event | `/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}` | ✅ |
| Delete DAG Dataset Queued Events | `/api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents` | ✅ |
| Get Dataset Queued Events | `/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents` | ✅ |
| Delete Dataset Queued Events | `/api/v1/datasets/{uri}/dagRuns/queued/datasetEvents` | ✅ |
| **Monitoring** | | |
| Get Health | `/api/v1/health` | ✅ |
| **DAG Stats** | | |
| Get DAG Stats | `/api/v1/dags/statistics` | ✅ |
| **Config** | | |
| Get Config | `/api/v1/config` | ✅ |
| **Plugins** | | |
| Get Plugins | `/api/v1/plugins` | ✅ |
| **Providers** | | |
| List Providers | `/api/v1/providers` | ✅ |
| **Event Logs** | | |
| List Event Logs | `/api/v1/eventLogs` | ✅ |
| Get Event Log | `/api/v1/eventLogs/{event_log_id}` | ✅ |
| **System** | | |
| Get Import Errors | `/api/v1/importErrors` | ✅ |
| Get Import Error Details | `/api/v1/importErrors/{import_error_id}` | ✅ |
| Get Health Status | `/api/v1/health` | ✅ |
| Get Version | `/api/v1/version` | ✅ |
## Setup
### Dependencies
This project depends on the official Apache Airflow client library (`apache-airflow-client`). It will be automatically installed when you install this package.
### Environment Variables
Set the following environment variables:
```
AIRFLOW_HOST=<your-airflow-host> # Optional, defaults to http://localhost:8080
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>
AIRFLOW_API_VERSION=v1 # Optional, defaults to v1
```
### Usage with Claude Desktop
Add to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uvx",
"args": ["mcp-server-apache-airflow"],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
```
For read-only mode (recommended for safety):
```json
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uvx",
"args": ["mcp-server-apache-airflow", "--read-only"],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
```
Alternative configuration using `uv`:
```json
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uv",
"args": [
"--directory",
"/path/to/mcp-server-apache-airflow",
"run",
"mcp-server-apache-airflow"
],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
```
Replace `/path/to/mcp-server-apache-airflow` with the actual path where you've cloned the repository.
### Selecting the API groups
You can select the API groups you want to use by setting the `--apis` flag.
```bash
uv run mcp-server-apache-airflow --apis dag --apis dagrun
```
The default is to use all APIs.
Allowed values are:
- config
- connections
- dag
- dagrun
- dagstats
- dataset
- eventlog
- importerror
- monitoring
- plugin
- pool
- provider
- taskinstance
- variable
- xcom
### Read-Only Mode
You can run the server in read-only mode by using the `--read-only` flag. This will only expose tools that perform read operations (GET requests) and exclude any tools that create, update, or delete resources.
```bash
uv run mcp-server-apache-airflow --read-only
```
In read-only mode, the server will only expose tools like:
- Listing DAGs, DAG runs, tasks, variables, connections, etc.
- Getting details of specific resources
- Reading configurations and monitoring information
- Testing connections (non-destructive)
Write operations like creating, updating, deleting DAGs, variables, connections, triggering DAG runs, etc. will not be available in read-only mode.
You can combine read-only mode with API group selection:
```bash
uv run mcp-server-apache-airflow --read-only --apis dag --apis variable
```
### Manual Execution
You can also run the server manually:
```bash
make run
```
`make run` accepts following options:
Options:
- `--port`: Port to listen on for SSE (default: 8000)
- `--transport`: Transport type (stdio/sse/http, default: stdio)
Or, you could run the sse server directly, which accepts same parameters:
```bash
make run-sse
```
Also, you could start service directly using `uv` like in the following command:
```bash
uv run src --transport http --port 8080
```
### Installing via Smithery
To install Apache Airflow MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@yangkyeongmo/mcp-server-apache-airflow):
```bash
npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude
```
## Development
### Setting up Development Environment
1. Clone the repository:
```bash
git clone https://github.com/yangkyeongmo/mcp-server-apache-airflow.git
cd mcp-server-apache-airflow
```
2. Install development dependencies:
```bash
uv sync --dev
```
3. Create a `.env` file for environment variables (optional for development):
```bash
touch .env
```
> **Note**: No environment variables are required for running tests. The `AIRFLOW_HOST` defaults to `http://localhost:8080` for development and testing purposes.
### Running Tests
The project uses pytest for testing with the following commands available:
```bash
# Run all tests
make test
```
### Code Quality
```bash
# Run linting
make lint
# Run code formatting
make format
```
### Continuous Integration
The project includes a GitHub Actions workflow (`.github/workflows/test.yml`) that automatically:
- Runs tests on Python 3.10, 3.11, and 3.12
- Executes linting checks using ruff
- Runs on every push and pull request to `main` branch
The CI pipeline ensures code quality and compatibility across supported Python versions before any changes are merged.
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
The package is deployed automatically to PyPI when project.version is updated in `pyproject.toml`.
Follow semver for versioning.
Please include version update in the PR in order to apply the changes to core logic.
## License
[MIT License](LICENSE)