Skip to main content
Glama
Dockerfileβ€’1.29 kB
# Use Python image with pre-installed uv as base image FROM ghcr.io/astral-sh/uv:python3.13-alpine # Set working directory to /app WORKDIR /app # Enable bytecode compilation to improve Python code execution performance ENV UV_COMPILE_BYTECODE=1 # Set link mode to copy instead of link because this is a mounted volume ENV UV_LINK_MODE=copy # Install project dependencies using lock file and settings (excluding the project itself) RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,source=uv.lock,target=uv.lock \ --mount=type=bind,source=pyproject.toml,target=pyproject.toml \ uv sync --locked --no-install-project --no-dev # Then, add the rest of the project source code and install # Separate dependency installation from project installation for optimal layer caching COPY . /app # Install the project (excluding development dependencies) RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --locked --no-dev # Put executables from virtual environment at the front of PATH environment variable ENV PATH="/app/.venv/bin:$PATH" # Set the port number for the application to run ENV PORT=8081 # Reset entrypoint to not call uv command ENTRYPOINT [] # Run the application directly using Python from virtual environment CMD ["python", "server.py"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/xja1023789-collab/ScraperMcp_el'

If you have feedback or need assistance with the MCP directory API, please join our Discord server