Skip to main content
Glama

get_shareholder_info

Retrieve shareholder information for specific Chinese stocks to analyze ownership structure and investor composition using stock symbol lookup.

Instructions

获取指定股票的股东情况

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
symbolYes股票代码 (例如: '000001')
output_formatNo输出数据格式: json, csv, xml, excel, markdown, html。默认: markdownmarkdown

Implementation Reference

  • Registers the get_shareholder_info tool with the MCP framework, specifying its name and description.
    @mcp.tool(name="get_shareholder_info", description="获取指定股票的股东情况")
  • Main handler function for the get_shareholder_info tool. Takes stock symbol and output format, fetches shareholder data using akshare, handles empty data, and formats output.
    def get_shareholder_info( symbol: Annotated[str, Field(description="股票代码 (例如: '000001')")] , output_format: Annotated[ Literal["json", "csv", "xml", "excel", "markdown", "html"], Field(description="输出数据格式: json, csv, xml, excel, markdown, html。默认: markdown"), ] = "markdown" ) -> str: """获取股东情况""" def get_shareholder_info_fetcher( symbol: str, **kwargs: Any ) -> pd.DataFrame: """获取股东数据""" return ak.stock_zh_a_gdhs_detail_em(symbol) df = get_shareholder_info_fetcher(symbol) if df.empty: df = pd.DataFrame() return _format_dataframe_output(df, output_format)
  • Pydantic schema definitions for input parameters: symbol (str) and output_format (Literal with default 'markdown'), output is str.
    symbol: Annotated[str, Field(description="股票代码 (例如: '000001')")] , output_format: Annotated[ Literal["json", "csv", "xml", "excel", "markdown", "html"], Field(description="输出数据格式: json, csv, xml, excel, markdown, html。默认: markdown"), ] = "markdown"
  • Helper function to fetch shareholder detail data from akshare (stock_zh_a_gdhs_detail_em).
    def get_shareholder_info_fetcher( symbol: str, **kwargs: Any ) -> pd.DataFrame: """获取股东数据""" return ak.stock_zh_a_gdhs_detail_em(symbol)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/xinkuang/china-stock-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server