Skip to main content
Glama

createMediaSmartCoverJob

Generate intelligent video thumbnails by analyzing content to select optimal cover frames for media files stored in cloud storage.

Instructions

创建媒体智能封面任务

Input Schema

NameRequiredDescriptionDefault
objectKeyYes对象在存储桶里的路径

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "objectKey": { "description": "对象在存储桶里的路径", "type": "string" } }, "required": [ "objectKey" ], "type": "object" }

Implementation Reference

  • src/server.ts:448-466 (registration)
    MCP tool registration for 'createMediaSmartCoverJob', including inline schema (objectKey: string), description, and handler function that delegates to CIMediaService.createMediaSmartCoverJob
    server.tool( 'createMediaSmartCoverJob', '创建媒体智能封面任务', { objectKey: z.string().describe('对象在存储桶里的路径'), }, async ({ objectKey }) => { const res = await CIMediaInstance.createMediaSmartCoverJob(objectKey); return { content: [ { type: 'text', text: JSON.stringify(res.data, null, 2), }, ], isError: !res.isSuccess, }; }, );
  • Core handler logic in CIMediaService.createMediaSmartCoverJob: submits SmartCover job to Tencent COS CI via POST /jobs, generates output path, polls status up to 10 times until success or failure.
    async createMediaSmartCoverJob(objectKey: string) { try { var host = this.bucket + '.ci.' + this.region + '.myqcloud.com/jobs'; var url = 'https://' + host; const lastDotIndex = objectKey.lastIndexOf('.'); const base = lastDotIndex === -1 ? objectKey : objectKey.substring(0, lastDotIndex); const outPutObject = `${base}_\${jobid}_\${number}`; var body = COS.util.json2xml({ Request: { Tag: 'SmartCover', Input: { Object: objectKey, // 存在cos里的路径 }, Operation: { Output: { Bucket: this.bucket, Region: this.region, Object: outPutObject, // 转码后存到cos的路径 }, SmartCover: { Count: 1, }, }, }, }); const createResult = await new Promise((resolve, reject) => { this.cos.request( { Key: 'jobs', Method: 'POST', // 固定值 Url: url, Body: body, ContentType: 'application/xml', }, (error, data) => (error ? reject(error) : resolve(data)), ); }); try { const jobsDetail = (createResult as any).Response.JobsDetail; const initialCode = jobsDetail.Code; const initialState = jobsDetail.State; if (initialCode == 'Failed') { return { isSuccess: false, message: '智能封面任务失败', data: createResult, }; } if (initialState == 'Success') { return { isSuccess: true, message: '智能封面任务成功', data: createResult, }; } else { const jobId = jobsDetail.JobId; // 开始轮询 let pollResult: any; const maxAttempts = 10; const interval = 4000; for (let attempt = 0; attempt < maxAttempts; attempt++) { // 首次立即执行,后续等待间隔 if (attempt > 0) await new Promise((r) => setTimeout(r, interval)); try { // 查询任务状态 const { data: getResult } = await this.describeMediaJob(jobId); const describeJobsDetail = (getResult as any).Response.JobsDetail; const describeJobCode = describeJobsDetail.Code; const describeJobState = describeJobsDetail.State; // 处理终态 if ( describeJobCode === 'Success' && describeJobState == 'Success' ) { pollResult = getResult; break; } else if (describeJobCode === 'Failed') { return { isSuccess: false, message: '智能封面任务失败', data: getResult, }; } } catch (err) { // lastError = err as Error; // 记录错误继续重试 } } if (!pollResult) { return { isSuccess: false, message: `轮询超时(${maxAttempts}次未完成)`, data: createResult, }; } return { isSuccess: true, message: '智能封面任务成功', data: pollResult, }; } } catch (error) { return { isSuccess: false, message: '智能封面任务失败', data: error, }; } } catch (error) { return { isSuccess: false, message: '智能封面任务失败', data: error, }; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/xiaomizhoubaobei/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server