Skip to main content
Glama

MCP Power - Knowledge Search Server

by wspotter
QUICKSTART.mdβ€’4 kB
# MCPower - Quick Start Guide ## What You Just Built You've successfully created a **vector search knowledge base** from the Cherry Studio documentation! ## Dataset Statistics ### cherry-studio-docs - πŸ“„ **914 source documents** from `/home/stacy/cherry-studio-docs` - 🧩 **1,264 searchable chunks** (with 64-word overlap for better context) - πŸ€– **sentence-transformers/all-MiniLM-L6-v2** embedding model - πŸ“Š **384-dimensional vectors** indexed with FAISS ### sample-docs - πŸ“„ **5 sample documents** for testing - 🎯 Demonstrates basic functionality ## πŸš€ Launch MCPower (Easy Way) ### Linux/Mac Just run the launcher: ```bash ./launch.sh ``` Or double-click `launch.sh` in your file manager! ### Windows Double-click `launch.bat` ### What the launcher does: - βœ… Checks your environment setup - βœ… Starts the web console automatically - βœ… Opens your browser to http://127.0.0.1:4173 - βœ… Shows helpful startup messages ## How to Use ### 1. Web Console (Dataset Management) **Easy way:** Run the launcher (see above) **Manual way:** ```bash npm run web ``` Then open http://127.0.0.1:4173 in your browser to: - View all datasets - Create new datasets from document directories (drag & drop supported!) - Delete datasets - See dataset statistics ### 2. MCP Server (Search & Integration) The MCP server provides search functionality through the Model Context Protocol: ```bash npm start ``` This starts the MCP server that client applications can connect to for: - Semantic search across your knowledge bases - Integration with AI assistants - Context-aware document retrieval ### 3. Create More Datasets Use the Python indexer directly: ```bash .venv/bin/python python/indexer.py \ --source /path/to/your/docs \ --dataset-id my-docs \ --name "My Documentation" \ --description "Description here" \ --output ./datasets ``` Or use the web console's create dataset endpoint: ```bash curl -X POST http://127.0.0.1:4173/api/datasets \ -H "Content-Type: application/json" \ -d '{ "sourcePath": "/path/to/docs", "datasetId": "my-docs", "name": "My Documentation", "description": "Description here" }' ``` ## Environment Variables Create a `.env` file with: ```bash MCPOWER_PYTHON=/home/stacy/mcpower/.venv/bin/python MCPOWER_DATASETS=./datasets MCPOWER_WEB_PORT=4173 MCPOWER_WEB_HOST=127.0.0.1 LOG_LEVEL=info ``` ## Dataset Directory Structure Each dataset in `./datasets/` contains: ``` datasets/ └── cherry-studio-docs/ β”œβ”€β”€ manifest.json # Dataset configuration β”œβ”€β”€ metadata.json # Document metadata (6MB for 1264 chunks) └── index/ └── docs.index # FAISS vector index (1.9MB) ``` ## Supported Document Formats - `.txt` - Plain text files - `.md` - Markdown files ## Testing Run all tests: ```bash npm test ``` Run web server tests: ```bash ./test-web.sh ``` ## What's Next? 1. **Connect an MCP Client**: Use Claude Desktop or another MCP-compatible client to search your knowledge base 2. **Add More Datasets**: Index other documentation sets you want to search 3. **Customize Chunking**: Adjust `--chunk-size` and `--chunk-overlap` for your documents 4. **Try Different Models**: Use `--model` flag to try other sentence-transformer models ## Troubleshooting ### Server won't start ```bash # Kill any running instances pkill -f "tsx src/web/server.ts" # Restart npm run web ``` ### Python dependencies missing ```bash .venv/bin/pip install typer faiss-cpu sentence-transformers ``` ### Index validation fails Check that your Python path is correct in `.env`: ```bash echo $MCPOWER_PYTHON ``` ## Architecture - **TypeScript/Node.js**: MCP server and web console - **Python**: FAISS indexing and vector search - **Express**: Web API for dataset management - **FAISS**: Fast approximate nearest neighbor search - **Sentence Transformers**: Text embedding generation --- **Congratulations! Your knowledge base is ready to use! πŸŽ‰**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/wspotter/mcpower'

If you have feedback or need assistance with the MCP directory API, please join our Discord server