Skip to main content
Glama

MaverickMCP

by wshobson
MIT License
165
  • Apple
portfolio.py3.73 kB
""" Validation models for portfolio analysis tools. This module provides Pydantic models for validating inputs to all portfolio-related tools. """ from pydantic import Field, field_validator from .base import ( Percentage, PositiveInt, StrictBaseModel, TickerSymbol, TickerValidator, ) class RiskAnalysisRequest(StrictBaseModel): """Validation for risk_adjusted_analysis tool.""" ticker: TickerSymbol = Field(..., description="Stock ticker symbol") risk_level: Percentage = Field( default=50.0, description="Risk tolerance from 0 (conservative) to 100 (aggressive)", ) @field_validator("ticker") @classmethod def normalize_ticker(cls, v: str) -> str: """Normalize ticker to uppercase.""" return TickerValidator.validate_ticker(v) model_config = { "json_schema_extra": { "examples": [ {"ticker": "AAPL", "risk_level": 50.0}, {"ticker": "TSLA", "risk_level": 75.0}, {"ticker": "JNJ", "risk_level": 25.0}, ] } } class PortfolioComparisonRequest(StrictBaseModel): """Validation for compare_tickers tool.""" tickers: list[TickerSymbol] = Field( ..., min_length=2, max_length=20, description="List of ticker symbols to compare (2-20 tickers)", ) days: PositiveInt = Field( default=90, le=1825, # Max 5 years description="Number of days of historical data for comparison", ) @field_validator("tickers") @classmethod def validate_tickers(cls, v: list[str]) -> list[str]: """Validate and normalize ticker list.""" tickers = TickerValidator.validate_ticker_list(v) if len(tickers) < 2: raise ValueError("At least 2 unique tickers are required for comparison") return tickers model_config = { "json_schema_extra": { "examples": [ {"tickers": ["AAPL", "MSFT", "GOOGL"], "days": 90}, {"tickers": ["SPY", "QQQ", "IWM", "DIA"], "days": 180}, ] } } class CorrelationAnalysisRequest(StrictBaseModel): """Validation for portfolio_correlation_analysis tool.""" tickers: list[TickerSymbol] = Field( ..., min_length=2, max_length=30, description="List of ticker symbols for correlation analysis", ) days: PositiveInt = Field( default=252, # 1 trading year ge=30, # Need at least 30 days for meaningful correlation le=2520, # Max 10 years description="Number of days for correlation calculation", ) @field_validator("tickers") @classmethod def validate_tickers(cls, v: list[str]) -> list[str]: """Validate and normalize ticker list.""" tickers = TickerValidator.validate_ticker_list(v) if len(tickers) < 2: raise ValueError( "At least 2 unique tickers are required for correlation analysis" ) return tickers @field_validator("days") @classmethod def validate_days_for_correlation(cls, v: int) -> int: """Ensure enough days for meaningful correlation.""" if v < 30: raise ValueError( "At least 30 days of data required for meaningful correlation analysis" ) return v model_config = { "json_schema_extra": { "examples": [ {"tickers": ["AAPL", "MSFT", "GOOGL", "AMZN"], "days": 252}, { "tickers": ["SPY", "TLT", "GLD", "DBC", "VNQ"], "days": 504, # 2 years }, ] } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/wshobson/maverick-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server